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PURPOSE 

No longer is a single textbook sufficient as a source of teaching material for 
high school mathematics cIasses. Although the majority of the recent 
curriculum-revision projects have tended to emphasize primarily the de- 
velopment of pure mathematics, there is a growing awareness that students 
should also know something about the applications of mathematics. The 
National Aeronautics and- Space Administration has recognized the appeal 
of aerospace activities, and has initiated and supported the development of 
curriculum supplements for several high school courses. It is hoped that 
theyiil l  fill a need felt by many teachers. 

Because the present attainments in aerospace would not be possible without 
mathematics, it is most appropriate that supplementary publications deal- 
ing with space activities be made available to teachers of mathematics. It 
is our hope that students will become more interested in mathematics as 
the result of seeing some of its significant current space-related applica- 
tions. Working problems such as those in this book should enhance both 
the mathematical knowledge and skill of the student and his appreciation 
and understanding of space technology. 

CONTENT AND ORGANIZATION 

SPACE MATHEMATICS, A Resource for  Teachers consists of a collection 
of mathematical problems related to space science. Because the emphasis 
is on the mathematics, the problems have been grouped according to mathe- 
matical topics. A minimum amount of attention has been given to the 
development of theory. In general, the new formulas that are necessary 
for understanding the text have been quoted but not derived. In some 
cases, as in Chapter 10, formulas have been derived from more basic equa- 
~ M I S .  The theory that has been presented is explained only to the extent 
needed to make the problem understandable. A rigorous discussion of the 
principles of astronautics is beyond the scope of this book, and would in fact 
be inconsistent with the purpose of the book. It is largely for these reasons 
that no calculus problems appear in the text. The development of the 
theoretical basis of spaceflight depends heavily upon calculus, but the level 
of sophistication required is far above the high school level. The reader 
who is interested in this type of material will find it in other publications, 
several of which are listed in the Bibliography. 

A*-- 
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The problems range in difficulty from very easy ninth grade level ones to 
very challenging twelfth grade level applications. Within the chapters the 
problems are arranged roughly in order of increasing difficulty. Solutions 
are provided for all problems. A list of topics in mathematics presented 
in the text can be found in the Table of Contents, and the types of problems 
in each topic are listed in the introductions to the individual chapters. 

The problems were written by various writers. During the process of com- 
piling and editing the material, an attempt was made to retain, whenever 
possible, the style of the individual writer. Thus styles and arrangement 
vary somewhat from problem to problem and from chapter to chapter. Al- 
though some sets of problems are sequential, the authors have tried for the 
most part to make each problem self-explanatory. The lack of continuity 
in content throughout most of the book should not be disturbing. Actually 
it enables a teacher to select problems at will without preliminary study. 

NOTATION AND COMPUTATION 

For ease of reading, the most conventional notations and language have 
been used. The variety of writers, however, introduces certain inconsistc 
encies that might bother a reader who is not prepared for them. First, 
notation is only locally consistent. In problems dealing with rocket pro- 
puIsion, for instance, the letter c is used consistently to denote the exhaust 
velocity of a rocket. In other problems, however, such as those concerning 
relativity, c is used to denote the speed of light. In both cases, standard 
notation is followed. Similarly, e is used to denote both the eccentricity of 
a conic section and the base of natural logarithms. As a subscript, it may 
refer to Earth (as in re, the radius of Earth) or escape (as in vu0 the 
escape velocity). The reader should be able to interpret such symbols 
correctly from context. 

Second, the way in which units are handled is not consistent. In many 
problems, especially those in the early part of the book, the units are carried 
throughout the entire course of a computation. Such a practice should be 
encouraged initially, and it can be very helpful when the data involve an 
assortment of units. When, however, it is clear what the appropriate units 
are, they are often withheld until the final answer. 

Third, the matter of accuracy can become a thorny matter. Naturally it is 

The irrational number on the left-hand side cannot possibly be equal to the 
integer which stands on the right-hand side. In this case, 3,600 is the 
value of 103x@ rounded in such a way as to be consistent with the accura- 
cy of the data given in the statement of the problem. Unfortunately there 
are no simple, sure-fire rules for the rounding of answers - which is not to 
say that correct rounding is unimportant. In careful scientific work, great 
attention often must be paid to error analysis. It is usually not enough to 
determine a numerical value for a quantity, but one must also determine 

not intended that the equatisn 1 0 " p f l =  8,601) be interpreted litersrlly. .i . 
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its degree o€ accuracy. A distance, for instance, might be quoted as 3.71 
k0.02 centimeters, rather than 3.71 centimeters. The estimation of errors 
is frequently a complicated and tedious task. The authors have deliberate- 
ly shied away from such tasks, partly to make the computations less bur- 
densome, but mainly because such considerations could detract from the 
real point of a problem. In summary, some equal signs must be taken with 
a grain of salt. Perhaps the only general rule which we can state is that 
one should not expect greater accuracy in the answer than he has in the 
data. 

As those interested in the teaching of mathematics, whether they be class- 
room teachers, supervisors, curriculum specialists, or textbook writers, may 
have noted, this publication is essentially a supplement to the several 
courses in mathematics, grades 9 through 14. It is neither a text nor a sylla- 
bus; it is a rich resource of real problems through which it is hoped that 
students, because of their interest in aerospace, may be motivated toward 
a better understanding of mathematics as well as of the space program in 
general. 
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CONVERSION FACTORS, NOTATION, AND UNITS 
OF MEASUREMENT 

The conversion factors presented in this chapter will be new to many teach- 
ers of mathematics. As will be apparent from the problems presented, 
conversion from one set of units to another is often made easier by the use 
of conversion factors. The notation involved in using conversion factors 
and in some problems in other parts of the book will be new and perhaps 
controversial. The procedure of writing the units into the computation 
and then dividing, multiplying, adding, and subtracting units as if they 
were numbers is not often used in mathematics. 

Some physics and engineering textbooks do use the “factor label” tech- 
nique. Sometimes the use of this technique offers the best way for one 
to know what units are involved in the final answer. If the engineer does 
not write the units into the equation, he goes through a similar process 
mentally or on scratch paper. The evidence is that as the engineer gains 
experience in a given field, he finds it less and less necessary to make the 
units part of the computation. I t  should be understood that this labeling 
technique is not new, and it has no connection with the space program 
itself, except as the individual engineer or scientist finds it useful. 

The chapter also introduces a few of the units of measure used in space 
technology and incidentally provides some information on temperatures, 
distances, velocities, and the like that are characteristic of space explora- 
tion. 

Measurements expressed in one set of units can be converted to another 
set, by using conversion factors. A conversion factor expresses the re- 
lationship between two units as a ratio equal to 1. Tfierefore, multiplica- 
tion or division by this factor does not alter the size of the original 
expression. 

To obtain conversion factors we can begin with an equation which expresses 
the relationship between two units. Division of both members of the 
equation by either the left or right member results in a conversion factor. 
Thus, beginning with 

1 yd = 3 ft,  
. we may obtain either 

12 
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CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT 

or 

Some uses of these conversion factors are shown in the problems. 

PROBLEMS 

1. When a spacecraft returns from the Moon, lunar gravity will slow it 
down until it enters the sphere of Earth’s gravitational influence. Then 
Earth’s gravity will cause it to accelerate until it reaches a speed of nearly 
25,000 miles per hour. Convert this speed to feet per second, using the 
relationship 

Solution. We are given 

60 mi/hr = 88 ft/sec. 

v = 25,000 mi/hr. 

Using a conversion factor from the given relationship, we get 

88 ft/sec 
v = 25,000 mi/hr X 6o mi/hr 

29200’ooo ft/sec 60 
= 36,700 or 37,000 ft/sec. 

2. The speed of light is about 186,300 miles per second. 

a. Calculate its speed in miles per hour. 

Solution. Using two conversion factors, we obtain 

mi 60 sec 60min 
v = 186,300 - X - X ~ sec 1 rmn 1 hr 

= (1.863 X 105)(6.0 X lO)(6.0 X 10) mi/hr 

= 6.907 x m e  rrJ/hr. 

b. Calculate the number of miles in 1 light year, the distance light can 
travel in 1 year. Use 365 days = 1 year. 

Sdution. Using two conversion factors, we obtain 

24 hr 365 days 
1 Yr 

1 light yr = 6.707 X lo8 mi/hr X 

= 5.875 X lot2 mi/yr = 5.88 X 1OI2 mi. 
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CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT 

3. A'typical altitude for manned spacecraft about Earth is 100 miles 
because this is the lowest altitude at which air resistance becomes small 
enough to make a stable orbit possible. Because the speed in a circular 
orbit at this altitude is about 17,500 miles per hour, this speed is sometimes 
quoted as a typical one for space travel. How many years would it take 
for a spaceship to travel 1 light year if its rate is 17,500 miles per hour? 

Solution. Solving the distance-time-rate equation, d = vt, for t, we obtain 

3 5-88 lo'* mi = 3-36 I 108 hr. 1.75 X 104mi/hr 

Converting 3.36 X lo8 hours to years yields 
1 day 1 yr 3.36 X lo8 hr = 3.36 X lo8 hr X X 365 days 

= 3.36 X lo8 hr X 8,760 1yr hr 

= 3.84 X lo4 yr 

= 38,400 yr. 

4. If a spacecraft were to escape from our solar system, it would need, if 
departing at a distance equal to Earth's distance from the Sun, a speed of 
94,200 miles per hour or more. Because Earth is moving about the Sun at 
the rate of 66,600 miles per hour, the spacecraft could be given the required 
speed if launched from Earth in the direction of the Earth's motion about 
the Sun with a speed of 27,600 miles per hour relative to Earth. Suppose 
that a spacecraft of sufficient size can be given this initial speed, and that 
in addition a source of propulsion on board will enable it to maintain 
94,200 miles per hour as an average speed. How long would it take the 
spacecraft to reach the nearest star, Alpha Centauri, which is 4.3 light 
years away? 

NOTE: Average speeds have little meaning in the operation of spacecraft. 
Speed is constantly changing as a result of propulsion and gravity forces. 
Only if a spacecraft were located out in space, far from any significant 
gravity field, could it coast with a nearlv constant speed. . - . 

Solution. 
d 

t = ;  

4.3 X 5.88 X 10I2 mi 
94,200 mi/hr 

25.28 X 10I2 hr 

- - 

= 9.42 x 104 
= 2.68 X lo8 hr. 



CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT 

Converting 2 . 6 8 ~ 1 0 ~  hours to years yields, using the computation from the 
previous problem, 

2.68 X lo8 hr = 2.68 X lo8 hr X 8,760 1 Yr hr 

= 3.06 X lo4 yr 

= 3.1 X 104yyr. 

NOTE: 
only two significant digits. 
we must round the final answer to two significant digits. 

In this problem, the value 4.3 for the number of light years has 
Therefore, for consistency in our computation, 

5. The average radii of Earth and the Moon are approximately 6,371 and 
1,738 kilometers, respectively. 

a. What is the ratio of the volume of Earth to the volume of the Moon? 

Solution. Using the formula for the volume of a sphere, V =Ai+, we get 3 

Thus the volume of Earth is 49.3 times as large as the volume of the Moon. 

b. If the volume of Earth is 1.082 x lo2' cubic meters, what is the volume 
of the Moon? 

Solution. Because the volume of Earth is 49.3 times as large as that of the 
Moon, the volume of the Moon is 

1*082 ms = 2-19 X 1019 m3. 49.3 

6. The temperature on the surface of the Moon is thought to vary from a 
low of 120" K to a high of 383" K. (The Kelvin temperature scale has the 
same size degree as the Celsius, or centigrade, scale but is measured from 
absolute zero as the starting point. Students who are not acquainted with 
the different temperature scales may get information by reading appro- 
priate reference books.) What are the extremes of temperature on the 
Moon, expressed in degrees Celsius and Fahrenheit? 

Solution. Changing 120" K to degrees Celsius, we find 

120" - 273O = -153". 

Thus the Celsius temperature is -153" C. Converting this temperature . 
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CHAPTER 1 CONVERSION, NOTATION, AND UNITS O F  MEASUREMENT 

to degr'ees Fahrenheit, we have 

(=)(-153" 6 )  + 32" F = -243°F. 

Changing 383" K to degrees Celsius, we find 

383" - 273" = 110". 

Thus the Celsius temperature is 110" C. Converting this temperature to 
degrees Fahrenheit, we have 

(=)(llO" C) + 32" F = 230" F. 

Hence the temperature on the Moon varies from -153" to 110" C or from 
-243" to 230" F. 

7. The temperature of liquid hydrogen, the propellant used, in the second 
and third stages of the Saturn V launch vehicle, is about -253" C. What 
would this temperature read on the Fahrenheit scale? 

Solution. Converting -253" C to degrees Fahrenheit, we find 

(=)(-253" C) + 32O F = -423" F. 

8. The temperature of the surface of the Sun has been computed to be 
5,800" K. What temperature is this on the Celsius and Fahrenheit scales? 

Solution. Changing 5,800" K to degrees Celsius, we get 

5,800" - 273" = 5,527". 

Thus the Celsius temperature is 5,527" C. 
Fahrenheit, we have 

Converting 5,527" C to degrees 

(=)(5,527" C) + 32" F = 9,981" F. 

\ 

9. Sounding rockets have reported the lowest temperature ever measured 
for Earth's atmosphere. US.-Swedish cooperative sounding rocket studies 
conducted from Swedish Lapland found temperatures as low as -225" F in 
the upper atmosphere. What is this temperature in degrees Celsius? 

16 



CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT 

Solution. Using the conversion factor for changing Fahrenheit to Celsius, 
we get 

(-225" F - 32" F ) ( E )  = (-257)(1)' 

10. The astronomical unit (AU) is the average distance of Earth from the 
Sun. One AU equals approximately 92,960,000 miles. How many astro- 
nomical units are there in a light year? 

Solution. Using the conversion factor derived in problem 2b, we find 

1 AU 5.88 X lo1* mi = 5.88 X lo'* mi X 9.296 lol mi 
= 6.33 X 10' AU. 

11. The parsec is a unit of distance used to measure the great distances to  
stars. Two observations of a distant star with respect to a fixed, more 
distant star field are made at &month intervals (see figure) when Earth 
is on opposite sides of its orbit around the Sun. The distance between the 
observation points El and E2 is 2 AU. The star in question is 1 parsec 
distant from Earth if the parallax angle, one-half the angle subtending an 
arc of 2 AU, is 1 second. The arc length and the chord of the arc are 
close to being equal, and are considered to be the same. This is why the 
parallax angle is the angle Sun-star-Earth at E*. The farther away the 
star is from Earth, the smaller the parallax angle will be. 

How many astronomical units are there in 1 parsec? Use the approxima- 
tion 3.14159 for X. 

17 



CHAPTER 1 CONVERSION, NOTATION, AND UNITS OF MEASUREMENT 

Solution. In a complete circle, there are 2~ radians, which equal 360 x 60 
x 60 seconds. Thus, if the parallax angle 6 equals 1 second, then, 

2A A radian = a8,m - radian. e 360 X 60 X 60 

648,m AU =- 
A 

= 206,265 AU. 

In actual use, the length of a parsec is often rounded to 206,300 AU. 

12. How many light years are there in a parsec? 

Solution. By the preceding two problems, there are 206,300 AU in 1 parsec, 
and 63,300 AU in 1 light year. Therefore, 

1 parsec = :T:g - light yr 

= 3.26 light yr. 

13. Among the planets of the solar system, Pluto is the most distant from 
the Sun. Its maximum distance from the Sun is about 4.60 billion miles. 

a. How long does it take the light of the Sun to reach Pluto at this distance? 

Solution. Using the distance-rate-time equation, we have 

4.60 X lo9 mi 
t =  1.863 X 105mi/sec 

= 2.47 X 10'sec 

=6ht52min. 

b. What is the maximum distance from the Sun'to Pluto in terms of astro- 
nomical units ? Use the conversion factors previously derived. 

Solution. 
1 AU 4.60 X lo9 mi = 4.60 X lo9 mi X 9.296 mi 

e. Find the distance in tei-ms of light years. 
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- 
Solution. 

1 light yr 4.60 X lo9 mi = 4.60 X log mi X 5.88 mi 

= 0.782 X lb3 light yr 

= 0.000782 light yr 

14. The chances of penetration of space vehicles by meteoroids has recently 
been shown to be several thousand times lower than estimated several years 
ago. Except for travel in the asteroid belt, it would appear that the 
meteoroid problem would rank low as a criterion in the selection of space- 
cabin materials. A recent estimate is that the shortest average interval 
of time between perforations of an aluminum skin 10-l centimeter thick is 
1.0 X lo8 seconds. Compute the number of years between perforations. 

Solution. Converting 1.0 x lo8 seconds to years, we have 

1 min 1 hr 1 day 1 yr= 
60 see 60 min 24 hr 365 days 1.0 X lo8 see = 1.0 X lo8 see X - x-x- 

1.0 x 108 sec 
3.15 X lo7 sec/yr 

i= 

= 3.17 or 3.2 yr. 

NOTE: This estimate is pessimistic because it gives the minimum number 
of years expected between perforations. A more optimistic estimate is one 
perforation every 100 years. 
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ELEMENTARY ALGEBRA 

This chapter contains problems which in general require only algebra, and 
is limited largely to equations of the first degree. Algebraic problems of a 
more advanced nature are provided in Chapter 3, “Ratio, Proportion, and 
Variation,” and Chapter 4, “Quadratic Equations.” In other chapters, 
algebra is used to solve problems involving probability, exponential and 
logarithmic functions, geometry, and trigonometry. 

The chapter presents problems related to radio transmission, Mach number, 
launch and reentry velocities and accelerations, pumping rate of an astro- 
naut’s heart during launch, barycenter, periods of certain planets, and 
sidereal and synodic period of a satellite. 

These problems are designed to demonstrate that even very elementary 
algebraic formulas are useful in the space and technological age. 

PROBLEMS 

I. A radar transmits pulses of electromagnetic waves, which travel at the 
speed of light, approximately 186,300 miles per second. Directional an- 
tennas radiate the energy in narrow beams. If the radiated waves strike 
an object such as a plane, ship, or rocket, some of the energy may be re- 
flected back to the radar. The indicator on the radar usually is calibrated 
to convert the time between transmission and reception into units of dis- 
tance. 

Given that t is the length of time for a pulse of energy to be both trans- 
mitted by and reflected back to the radar, c is the speed of light, and d is the 
distance between the radar and the object, devise a formula for the dis- 
tance d. 

, Transmitted wave 

Radar ‘ 
Solution, The total time of travel for the pulse will be the time it takes 

22 
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CHAPTER 2 ELEMENTARY ALGEBRA 

to get to th;! target plus the time it takes to rebound to the radar station ; 
that is, 

t = tl + tz. 

Because tl and tf are equal, we can say 

1 tl = Zt. 

By the distance-rate-time equation, we have 

d l  tl = - = Zt. 
C 

Hence the required formula is 
1 
2 d = -ct. 

2. In 0.01 second after transmission, a Texas radar station receives a reflec- 
tion from a Saturn rocket. 

a. How many seconds did it take for the pulse to reach the rocket? 

Solution. Since the pulse must travel a certain time before hitting the 
rocket and then must return along the same path in the same amount of 
time, it must take half the total time for the pulse to reach the rocket, or 

1 $0.01 see) = 0.005 see. 

b. How far  away is the rocket from the radar station? 

Solution. Substituting the time calculated in part a and the speed of 
light into the distance-rate-time equation, we have 

d = c t  

= (186,300 mi/sec) (0.005 see) 

= 932 mi. 

3, A LO- by 10-foot-squzre srrpersonic wind tiinnel is operated at Mach. 3- 
Find the volume of airflow per second through the wind tunnel. 

NOTE: In the wind 
tunnel where the temperature is approximately 212" F, the speed of sound 
is 1,200 feet per second. 

The speed of sound is dependent upon temperature. 

Solution. 
feet per second ; therefore 

Under the given conditions, the speed of sound, Mach 1, is 1,200 

Mach 3 = 3,600 ft/see. 
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CHAPTER 2 ELEMENTARY ALGEBRA 

The cro’ss-sectional area of the wind tunnel is 10 by 10 feet or 100 square 
feet, and the volume of airflow per second is 

Volume/sec = (distance air travels/sec) (cross-sectional area) 

= (3,600 ft/sec) (100 ft2) 

= 360,000 fta/sec 

= 3.6 X lo5 ft3/sec. 

4. A meteorite crashed to Earth in Siberia on February 12, 1947. It was 
found to contain a number of elements. There were 70 pounds of iron, 20 
pounds of calcium, and 30 pounds of unknown material. What was the 
percentage by weight of unknown material? 

Solution. In calculating the total weight of the meteorite, we get 

70 Ib iron 
20 Ib calcium 
30 Ibunknown 
120 Ib total 

To obtain the percentage by weight of the unknown material, the fraction 

120 Ib 100’ 30 Ib is multiplied by - loo which gives the following result : 

30 Ib loo ”* loo = 25 percent of unknown material. 120 lb = 100 

5. A two-stage rocket is fired vertically and has a speed vo when the second- 
stage motor ignites, providing an average acceleration a. Two seconds 
after the second-stage ignition, the speed of the rocket is 1,700 feet per 
second, and after 5 seconds i t  is 2,900 feet per second. (Note that we are 
concerned only with the time that elapses after second-stage ignition.) 
Find a and vo, given that the final speed is equal to the initial speed plus the 
product of acceleration and time. 

Solution. Applying the given equation yields 
2,900 = 110 + u(5) 

. a = 400 ft/secz. 

Substituting this value of a into either of the preceding equations yields 
vo = 900 feet per second. 

NOTE: See the comment in Chapter 1, problem 4, regarding the use of 
averages. 
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CHAPTER 2 ELEMENTARY ALGEBRA 

6. A scientific capsule was carried aloft and released at the peak of the 
trajectory by a rocket that had an average vertical speed of 570 miles per 
hour. The capsule made a controlled descent with an average vertical 
speed of 240 miles per hour and landed 67.5 minutes after the rocket was 
launched. Find the maximum height reached by the rocket. 

Solution. First the time of ascent in hours t is found by equating expres- 
sions for the distance of ascent and descent: . 

570t = 240 (E 67.5 - t )  

= 270 - 240t 

1 ‘  t y  

Thus the rocket reached the peak of its trajectory 1/3 hour after launch. 
The maximum height reached is equal to the product of the speed and time; 
Le., (570 miles per hour) (1/3 hour) or 190 miles. 

7. During a spacecraft launching, an astronaut’s heart pumps blood at a 
rate of 10 pints per minute greater than when he is sitting in normal COIL. 
ditions. Under launching conditions his blood makes two times as many 
complete circulations in 8 minutes as when normally sitting. The astro- 
naut’s body contains 10 pints of blood. Find the rate his heart pumps dur- 
ing launching. 

Solution. Letting L = rate during launch and S = rate at normal sitting, 
we have 

and 
8 = (1/2)J5 
L = S + f O  

= (1/2)L + 10 

= 20. 

The rate during launch is then 20 pints per minute. 

8. The planets Earth, Jupiter, Saturn, and Uranus revolve around the Sun 
approximately once each 1, 12, 30, and 84 years, respectively. 

a How often will Jupiter and Saturn appear in the same direction in the 
night sky, as seen from Earth? 

Solution. Let J and S represent the periods of revolution of Jupiter and 
Saturn, respectively. In 1 Earth year, Jupiter revolves (1/12) J and Saturn 
,revolves (1/30) S. Equating these times yields (1/12) J = (1/30) S, or 
5J = 2s. Hence Jupiter makes five revolutions, while Saturn completes 
two revolutions. Thus the p€anets will appear in the same direction, as 
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seen from Earth in the night sky, once every 5(12 years) = 2(30 years) 
= 60 years. 

Alternate solution. It is clear that the time required is a multiple of 30 
years because the period of revolution of Saturn is 30 years. Hence, the 
result is the least common multiple of the two periods, which is 60 years. 

b. About how often will the planets Jupiter, Saturn, and Uranus all appear 
in the same direction in the night sky as seen from Earth? 

Solution. Utilizing the method of part a, we have 

or 
(1/12)J = (1/30)S = (1/84)U, 

35J = 14s = 5u. 

Substituting for J ,  S, and U, we have 

35(l!2 yr) = 14(30 yr) = 5(84 yr) = 420 yr. 

Alternate solution. The least common multiple of 12, 30, and 84 years is 
420 years. Thus the three planets will appear as described once every 420 
Y W .  

9. The huge 10-story-high Echo satellite was designed to reflect radio 
waves back to Earth. To be a good reflector, the spherical satellite required 
a diameter tha t  was at least as large as the wavelength X of the wave 
reflected, that is 

D y 2 1. 

Determine the minimum diameter D in meters needed for the satellite to 
be a good reflector of waves with frequency of lo7 hertz. (The hertz is 
the new unit recentIy adopted for indicating. the frequency in cycles per 
second. One hertz is 1 cycle per second.) The length of a wave is the 
distance traveled by a series of waves during a given time divided by the 
frequency or number of waves propagated during that time. That is, 

where c is the speed of' light, 3 x 108 meters per second, and f is the fre- 
quency. Also find the surface area and volume of the Echo satellite. 

Solution. The wavelength is 

X - 4  

3 X 108 m/sec 
1 0 7 ~ ~  

= 30m. 
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. 

Substituting this value into the diameter relation gives 

D 
30m 
- 

D 2 30m. 

Hence the Echo satellite must be at least 30 meters in diameter. 
this value to be the approximate diameter, the surface area is 

Assuming 

The volume is 

S=4%T2 

= &(I5 m)* 

= 2,828 or 2,800 mz. 

4 
0 3 - 3  3 

4 
= ~ ( 1 5  m)3 

= 14,137 or 14,000m3. 

10. The moment of a mass is the product of the mass and the distance of 
the mass from the center of rotation. The point at which the sum of the 
moments is zero is called the center of mass. This point is usually called 
the barycenter. An example is the fulcrum at which a teeter-totter is 
balanced. 

a. Determine the center of mass of two equal point masses. 

Solution. Let mass m be located the distance a from the center of mass, 
while another equal mass m is located at distance b from the center of mass, 
as indicated in the drawing. 

m m 
A a b 

Then, if the moments are in balance, 

ma = mb 
a - b  

Hence the center of mass, or barycenter, is midway between two equal 
masses. 

b. If M is the mass of Earth, the mass of the Moon is about M/81. The 
distance between the centers of Earth and the Moon is about 239,000 
miles. Find the location of the barycenter of the Earth-Moon system. 
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Solutio;. Let z be the number of miles between the barycenter and the 
centerof Earth. Then 

M MX = (239,000 - X) jji 
812 = 239,000 - x 

239,000 
82 

2s- 

= 2,915 or 2,900 mi. 

Thus the barycenter is below the surface of Earth, about 2,900 miles from 
its center. 

c. During the rotation of Earth about the Sun, the Earth-Moon barycenter 
follows a path about the Earth-Moon-Sun barycenter. The Sun is about 
332,500 times more massive than Earth. The distance between the center 
of the Sun and the Earth-Moon barycenter is about 93 million miles. Find 
the location of the Earth-Moon-Sun barycenter. 

Solution. Let M’ be the mass of the Earth-Moon system. 
metic, M = (81/82)M’, then the mass of the Sun will be 

By simple arith- 

if z is the number of miles between the center of the Sun and the Earth- 
Moon barycenter, 

(328,450M‘)~ = M’(93,000,000 - X) 
328,4502 = 93,000,000 - z 

93,000,000 
328,451 2 =  

= 283 or 300 mi. 

Thus the barycenter of the Earth-Moon-Sun system is inside the Sun about 
300 miles from its center. (This solution assumes that the mass of each 
body is concentrated at its center. Thus the figure is not precise, and gives 
us only a rough idea of the location of the barycenter.) 

11. The time required for an orbiting satellite to make one complete revo- 
lution of Earth is called its period. The length of the period depends upon 
the location of the observer making the measurement. 

Suppoae the observer is located far  out in space and views the satdiik 
against the background of fixed stars. The period measured in this manner 
is called the sidereal period of revolution or “the period in relation to the 
stars.” Note that the rotation of Earth does not affect the sidereal period. 

Now suppose the observer is on Earth standing on the Equator. A satel- 
lite in low Earth orbit moving directly eastward is overhead. When the 
satellite has made one complete transit of its orbit, it will be behind the 
observer because the rotation of Earth will have carried him a distance 
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eastward. The satellite must travel an additional distance to again be 
directly over the head of the observer. The observer measures the period 
of the satellite as the time elapsing between successive passes directly over- 
head. This is referred to as the sgnodic period of revolution or “the period 
between successive conjunctions.” The synodic period takes into account 
the rotation of Earth. It is greater than the sidereal period if the satellite 
travels in an easterly direction. 

The Gemini 7 spacecraft with astronauts Borman and Love11 aboard com- 
pleted 206 synodic periods with respect to Cape Kennedy and 220 sidereal 
periods with respect to a fixed point in space during its 14-day mission. 

The sidereal period in seconds can be computed by the formula P = 2 z  
d m  where a is the average radius of orbit measured in miles from 
the center of the body about which the satellite is in orbit. (The derivation 
of this formula is given in Chapter 10.) G is the constant of universal grav- 
itation and M is the mass of the body about which the satellite orbits. The 
average radius of Earth is 3,960 miles, and for the Moon it is 1,080 miles. 
When the units of measurement are miles and seconds, the product GM is 
9.56 x lo4 for Earth and 1,176 for the Moon. 

Usually spacecraft orbit in the same easterly direction as Earth’s rotation 
and are said to be in a posigrade orbit. All U.S. manned spaceflights have 
been launched in posigrade orbits to take advantage of the additional veloc- 
ity imparted to the spacecraft by Earth’s rotation. 

If the direction of orbiting is westerly, or opposite to Earth’s rotation, the 
orbit is said to be retrograde. In this case an Earth observer would meet 
the satellite before it made one complete revolution around Earth. Accord- 
ingly, the synodic period would be less than the sidereal period. 

a. Find the sidereal period of a satellite with an average altitude above 
Earth of 100 miles. 

Solution. The radius of orbit is equaI ta the radius of Earth plus the aver- 
age altitude of the satellite, or 

a = 3,960 mi + 100 mi 

= 4,060mi. 

Hence the sidereal period in seconds is 

= (6.28) (4,0SO)dT 9.56 x 104 

= (25,500) 

= 5,258. 

Thus the sidereal period is 5,258 seconds = 87.6 minutes = 1.46 hours. 
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b. Find the sidereal period of Lunar Orbiter 3, which traveled an orbit of 
89 by 196 miles above the Moon’s surface. 

Solution. The average radius of the orbit is the average radius of the Moon 
plus the average altitude of the satellite, or 

a = 1,080 mi + f(89 + 196) mi 

= 1,223mi. 

Therefore the sidereal period is 

= (6.28) (1,223)4= 1,223 
. 1,176 

= 7,680- 

= 7,834. 

Thus the sidereal period is 7,834 seconds = 131 minutes = 2 hours 11 
minutes. 

12. For the satellite in problem l la :  

a. Compute the synodic period of the satellite, assuming it is in a posigrude 
equatorial orbit. 

Solution. Let z be a position on the Equator at which the satellite is 
directly over the observer. During one synodic period the rotation of Earth 
carries the observer to position y, where the satellite “overtakes” him again. 
The basic problem is to find the angular distance A. 

In one synodic period the observer traveled an angular distance A, and the 
satellite traveled an angular distance 360” + A. The observer travels 360” 
in 24 hours, or 1” in 24/360 hours. Thus, during one synodic period the 
observer travels (24/360) A hours. 
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From problem lla the sidereal period is 1.46 hours. Thus the satellite 
travels 1" in 1.46/360 hours. During one synodic period the satellite travels 
(1.46/360) (360 + A) hours. The synodic period for the satellite and ob- 
server are, of course, equal. Therefore, we have 

(1.46)(360' + A )  = 24A 

525.6' + 1.46A = 24A 

22.54A = 525.6" 

A = 23.3'. 
Hence, the synodic period is ~ 

( 9 ) ( 3 6 0 '  + 23.3") = 1.555 hr 
= 93.3min. 

Note that the synodic period is 5.7 minutes greater than the sidereal period. 

b. Compute the synodic period of the satellite, assuming it is in a retro- 
grade equatorial orbit. 

Solution. The observer would travel an angular distance A, but the satel- 
lite would travel only 360" - A  during the synodic period. By using the 
same approach as in part a and equating times, we have 

A = 20.6O. 
Therefore, the synodic period is 

(-)(360" - 20.6") = 1.376 hr 

= 82.6 min. 

Note that the posigrade synodic period is 10.7 minutes greater than the 
retrograde synodic period. 
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RATIO, PROPORTION, AND VARIATION 

This chapter contains problems in algebra that illustrate the concepts of 
ratio, proportion, and variation. Although some of these problems could 
be presented in another context and be solved by other means, placing them 
in this chapter provides a selected list of problems illustrating these con- 
cepts. In a number of instances, these profilems are related to and augment 
problems in other chapters. When this situation arises, cross-references 
are used. 

The rich variety of space-related topics discussed in the chapter includes 
thrust-to-weight ratio, mass ratio, specific impulse and exhaust velocity, 
derivation of Newton’s law of universal gravitation, problems involving 
force and acceleration of gravity on the Moon and on an asteroid, “g forces” 
on an astronaut, artificial gravity, a number of interesting consequences of 
Einstein’s theory of relativity, variation of weight with distance from the 
center of gravity, strength of a reflected radio signal, temperature equi- 
librium of a satellite, and the roles of the Sun and Moon in producing tides 
on Earth. 

PROBLEMS 

1. A fundamental concept in the design and operation of launch vehicles 
is the thrust-to-weight ratio. Because most launches begin vertically, it is 
apparent that the thrust, the force that lifts the vehicle, must be greater 
than the weight. That is, the thrust-to-weight ratio must be greater than 
1. (According to Newton’s second law of motion, F = mu, the thrusting 
force F will give the vehicle an acceleration. The thrust remains constant 
or tends to increase a little as the propellant is burned. Meanwhile, the 
mass m is rapidly reduced as the propellant is burned. The result is an 
increasing acceleration. From this acceleratior, must be subtracted, of 
course, the acceleration of gravity, which acts as a retarding force. For 
additional information about launch vehicle behavior: see Chapter 6.) 

Find the thrust-to-weight ratio of the following launch vehicles. 

VeI$cle Thrust Weight 
114,200 Delta _______________-__ 170,000 

Atlas-Centaur 368,000 3 0 0,O 0 0 
Gemini-Titan I1 ________________  430,000 300,000 
Saturn IB __________________________ 1,600,000 1,294,000 
Saturn V _________________________ 7,700,000 6,400,000 
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Solution. The answers, found by simple division, are respectively 1.49, 
1.23, 1.43, 1.24, and 1.20. 

takeoff weight 2. The mass ratio of a launch vehicle is defined as R =burnout weight* 

The weight of a rocket or launch vehicle can be divided into three parts: 
the weight of the structure S; the weight of the propellant or fuel F; and 
the weight of the payload P. The part of the weight that disappears be- 
tween liftoff and burnout is F. Burnout occurs, of course, when all the fuel 
has been burned. Thus the mass ratio is usually defined as 

S + F + P  
S + P  R =  

(Further information about the relationship of the mass ratio to launch 
vehicle operation will be found in Chapter 6.) 

lf the mass ratio of a launch vehicle is 7, the weight of the structure is 2 
tons, and the weight of the payload is 1 ton, find the weight of the fuel. 

Solution. Applying the given equation yields 

S + F + P  
S4-P 

2 tons + F + 1 ton 
2tom+lton 

R =  

7 =  

F = 18 tons. 

3, The Mach number M is a measure of speed and is defined as the ratio of 
the vehicle’s speed z1 to the speed of sound at that altitude ?I@. (The Mach 
number varies with temperature, and the temperature varies with alti- 
tude.) What is the Mach number of an aircraft flying at 845 feet per 
second at an altitude of 30,000 feet? (Assume that the speed of sound at 
this altitude is 995 feet per second.) 

Solution. By definition, 
V M = -  
vo 

a45 ft/sec 
995 ft/sec 

= 

4. The specific impulse Isi, of a propellant-engine combination is the thrust 
produced when 1 pound of propellant is burned in 1 second. That is, I* = 
- where F is the thrust or force measured in pounds, w is the weight in 
wft’ 
pounds of the propellant burned, and t is the time in seconds. Rearranging 

the equation to read I,, = E we note that the numerator is expressed in W ’  

35 



CHAPTER 3 RATIO, PROPORTION, AND VARIATION 

- 
pounds of force and seconds of time, whereas the denominator is expressed 
in pounds of weight. It is common practice to divide out the pounds, leav- 

ing the answer in seconds. Finally the ratio T, which represents pounds 

of propellant used per second and is called the weight flowrate, is commonly 
written as w, leaving us with the equation 

W 

F lap = - 
W' 

a. Find the specific impulse of a propellant when the burning of 1 pound 
per second produces a thrust of 400 pounds. 

Solution. Evidently w = 1 pound per second, and 

b. When 4,735,000 pounds of propellant are burned in 161 seconds, the 
thrust produced at sea level is 7,700,000 pounds. Find the specific impulse 
at sea level. 

Solution. 
w = 4'735y000 = 29,410 lb/sec 161 

(These data represent the performance of the Saturn V launch vehicle at 
sea level. Although zlr remains essentially constant, the thrust F increases 
with altitude ; as a result the specific impulse at burnout of the S-IC stage is 
higher.) 

e. If a propellant can be found that delivers 50 percent more thrust with 
the Same weight flowrate, how does this affect the specific impulse? \ 

Solution. If the weight flowrate is constant, the specific impulse is directly 
proportional to the thrust. In this case, therefore, the specific impulse would 
be 50 percent higher than for the first propellant. 

5. The exhaust velocity c produced by a rocket engine is directly propor- 
tional to the specific impulse of the fuel; that is, c = glS,,, where g is the 
acceIeration of gravity at the surface of Earth. We may derive the formula 

This as follows. 

form of the equation merely enables us to work with units of weight rather 

than mass. Acceleration is change in velocity per unit of time, or a = 7 

W W In the equation F = m a ,  m =  - obtaining F = -  a. 
9' 9 

C 
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Thus 

Rearranging, 
Ft c 
w g ‘  
- = -  

But as noted in the previous problem, 

which yields 
c = glap. 

(The relationship of exhaust velocity to launch vehicle operation is dis- 
cussed in Chapter 6.) 

a. What exhaust velocity will be produced by a propellant with a specific 
impulse of 360 seconds? 

Solution. The value of g is 32.2 feet per second per second. 

e=- 32‘2 ft X 360 sec 
sec/sec 

= 11,592 ft/sec. 

b. If an exhaust velocity of 14,000 feet per second is needed, what must be 
the specific impulse of the fuel? 

Solution. 

(The maximum specific impulse available from present chemical propellants 
is 450 to 460 seconds.) 

6. The statement has been made that Newton’s derivation of his inverse- 
square law of gravity from Kepler’s third law is among the most important 
calculations ever performed in the history of science. . Kepler’s third law, 
based upon observation rather than theory, states that the squares of tine 
periods of any two planets are to each other as the cubes of their average 
distances from the Sun. Derive Newton’s law from Kepler’s law. 

Solution. If we represent the periods of any two planets by t and T and 
their distances from the Sun by T and R, respectively, then 

TS R3 =-  - 
t2 T3 
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(. 

or 

Assuming that we know the values of t and r, and substituting for them a 
constant C, the equation can be reduced to 

Thiis if we know either T or R for the second planet, we can solve for the 
unknown quantity, In this problem, however, we wish to use this equation 
to discover a new relationship, Newton's law of gravitation. For a body 
moving in a circular path, the acceleration toward the center is 

V* 
r a=-. 

Substituting in F = mu, 
mu' 
t 

F=-. 

The velocity of the body in the circular orbit is 

2m 
V = -  T' 

Thus, 

Because T2 = CR3, we find by substitution in the previous equation that 

m k 2  1 K F=cx*=- R2 ' 

That is, the force holding a planet in orbit falls off as the square of the dis- 
tance R to the Sun. Newton expressed the value of K and obtained his 
law of universal gravitation 

This law applies not. only to the attraction behveen a platlet and the Sua, 
but to the attraction between any two bodies. G is the constant of universal 
gravitation, M and m are the masses of the two bodies, and T is the distance 
between their centers of mass. 

-. 

7. If M is the mass of Earth, then the mass of the Moon is 0.012M. The 
radii of Earth and the Moon are 3,960 and 1,080 miles, respectively. Use 
these facts with Newton's law of universal gravitation to find the ratio of 
surface gravity on the Moon to surface gravity on Earth. 
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Solution. If-we place a mass m at the surface of Earth, then the gravita- 
tional attraction between the mass and Earth is 

Similarly, the attraction between the Moon and an equal mass m placed on 
its surface is 

G (0.012211) m 
1,0892 * 

F,,, = 

The ratio of F ,  to Fa is 

F, 0.012 3960' 188,179 
F ,  1,0802 7 = 1,166,400 
-=- 

1 
6 

5 -  

That is, gravity at the surface of the Moon is 1/6 as great as gravity at the 
surface of Earth. 

8. Several scientists have suggested that manned landings eventuaIIy be 
-de on asteroids. With the equations that we now have available we 
can investigate many phenomena related to landing on and exploring an 
asteroid. Asteroids exist in many shapes and sizes, with diameters rang- 
ing from less than 1 mile to several hundred miles. It has been estimated 
that the density of asteroids is about three-fifths that of Earth. In the 
following problems we consider an asteroid with a diameter of 14 miles. 
We assume that it is spherical. Let us name it A-14. (A-14 has about 
the same diameter as Eros, but its mass is greater because Eros is believed 
to be brick shaped rather than spherical.) Find the ratio of the surface 
gravity on A-14 to the surface gravity on Earth. 

Solution. Because A-14 is spherical, we know that its volume is 

times the volume of Earth. Then if M is the mass of Earth, the mass of 
A-14 is 

' 

- 
(7,:O)t 

(&y X 
= 3,314 X 10-" M .  

- _ .  

Expressing the force of gravity at the surface of each body, 

GMm F, = - 3,9S02 
and 

G(3,314 X M m  
7 2  

FA 
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- 
Therefore - -  FA - 3,314 X 

F, 49 
X 3,9602 

= 106 x 10-5 
= 0.00106. 

Thus a person on A-14 would weigh just a trifle more than one-thousandth 
his weight on Earth. 

9. If a man weighs 180 pounds on Earth, what would he weigh on the Moon 
and on A-14? 

Solution. Weight on the Moon would be 
1 - 6 X 180 Ib = 30 Ib. 

Weight on A-14 would be 

or just over 3 ounces. 
0.00106 X 180 Ib = 0.191 lb, 

10. Compute the acceleration of gravity at the surfaces of the Moon and 
A-14. 

Solution. The equation F = ma tells us that the acceleration is directly 
proportional to the force that produces it. The force that causes a body to 
fall is its weight. The acceleration of a freely falling body near the surface 
of Earth is 32.2 feet per second per second. In the case of the Moon, the 
weight is 1/6 of Earth weight, and therefore the acceleration near the sur- 
face is 

1 - X 32.2 = 5.4 ft/sec2. 6 

Similarly for A-14, the acceleration near the surface is 
0.00106 X 32.2 = 0.034 ft/sec2. 

11. Galileo found that when a body falls from rest, the distance s traveled 
is directly proportional to the square of the time t of travel, or 

8 = kt2. 

1 
2 Experiment shows that k = - a, where a is the local acceleration caused by 

gravity. Thus we obtain the familiar equation found in physics, 

Find the distance that a body will fall in 10 seconds on each of the following 
bodies. 
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a. Earth. 

Solution. Because 
a = 32.2 ft/sec2, 

X 32.2 X lo2 s = a  
= 16.1 X 100 

= 1,610 ft. 

b. Moon. 

Solution. From problem 10, 

a = 5.4 ft/sec2, 

8 = 2 x 5.4 x 10' 1 

= 2.7 X 100 

= 270 ft. 

C. A-14. 

Solution. From problem 10, 

a = 0.034 ft/secz, 

8 = - 1 x 0.034 x. 102 
2 

= 0.017 X 100 

= 1.7 ft. 

12. Graph the equation s = $'2at2 for Earth and the Moon on the same set 
axes for t 9 8 and s < 200. 

Solution. 

= 
d 

200 
180 

1BQ 

140 

120 
100 

80 
Bo 

40 
20 

0 
0 1 2 3 4 5 6 7 8  

t, SBC 
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13. Using the data found in the preceding problem, find the time required 
for an object to fall 100 feet on Earth, the Moon, and A-14. (Ignore air 
resistance for a body falling to Earth.) By definition, acceleration is 

change in velocity per unit of time, or a =- From this equation we may 

write v = at. Use this equation to find the velocity at impact on the same 
bodies. 

V 

t '  

a. Earth. 

Solution. 
1 
2 100 f t  = - (32.2 ft/secz) (t') 

t2 = 6.21 sec2 

t = 2.49 sec. 

u 3: (32.2 ft/sec2) (2.49 sec) 

= 80.2 ft/sec. 
b. Moon. 

Solution. 
1 
2 

tZ = 37 sec2 

t = 6.1 set. 

100 f t  = - (5.4 ft/sec2) ( t z )  

u = (5.4 ft/sec2)(6.1 sec) 

= 33 ft/sec. 
C. A-14. 

Soh tion. 
1 100 f t  = 5 (0.034 ft/sec2) ( t2)  

tf = 5,882 sec2 

t = 76.7 sec = 1.28 min 

u = (0.034 ft/secz) (76.7 sec) 

= 2.6 ft/sec. 

14. The centripetal acceleration a on a body in circular motion varies di- 
rectly as the square of its rotational speed v (feet per second) and inversely 
as the radius T (feet). Astronauts are sometimes conditioned and tested in 
giant centrifuges that follow this law. 

a. Find the acceleration on an astronaut in a centrifuge with a diameter of 
100 feet and a speed of 80 feet per second. 
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. 
Solution. From the given statement we find 

V' 

r 
a = -  

- (SO ft/sec)2 
- 5oft 

= 128 ft/secz. 

b. "he acceleration due to gravity g is about 32 feet per second per second. 
Find the number of g's on the astronaut in part a. 

Solution. Applying the relation lg = 32 f t  per second per second gives 
1 128 ft/sec2 = 128 ft/sec2 X 32 ft7wc2 

= 4g. 

e. If the astronaut's norma1 weight is 170 pounds, find the force that the 
side of the centrifuge exerts on him. 

NOTE : Force is equal to mass times acceleration. 

Solution. 
170 Ib (128 ft/sec2) 20 F = m a = - a =  

g 32 ft/sec2 
= 680Ib. 

15. It is expected that in some future space stations, artificial gravity will 
be created by rotation of all or  part of the station. Gas jets or other pro- 
pulsion devices can be used to control the rate of rotation of the station. 
As in the case of the centrifuge, the rotation will produce a force against 
the astronaut that cannot be distinguished from gravity. If T is the dis- 
tance of a point in the station from the center of rotation, then the velocity 
of the point for N rotations per second is 

u = 2wN. 
As noted above, 

\ 

or v = G r .  VS 

r 
a = -  

Setting the two velocities equal, 

2mN = dG 

If T is given in feet, then u is the acceleration in feet per second per second. 
By controlling the values of T and N, any desired artificial gravity can be 
produced. 
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a. Compute the rotational rate needed if the radius of the station is 100 
feet and a gravity equal to one-half the gravity of Earth is desired. (Use 
g = 32 feet per second per second.) 

Solution. - 
N=$Js 

=-x-=- 1 4 4 
6.283 10 62.83 

= 0.064 

The rate of rotation must be 0.064 rotation per second or 60 x 0.064 = 3.8 
rotations per minute. 

b. Compute the needed rotational rate if the radius of the station is 500 
feet and Earth surface gravity is desired. 

Solution. 

0.253 
z- 
6.283 

0.M. 

The rate of rotation must be 0.04 rotation per second or 2.4 rotations per 
minute. 

16. A jet pilot coming out of a dive flying at 600 feet per second experiences 
a centrifugal force of 1,800 pounds. If the centrifugal force F is propor- 
tional to the square of the velocity v, find the force on a pilot flying the same 
path at 800 feet per second. 

Solution. From the given information we have 

where F1 = 1,800 pounds, v1 = 600 feet per second, and v2 = 800 feet per 
second. Thus the force on the pilot flying at 800 feet per second is 

1,800Ib - - F2 
(600 ft/sec)2 (800 ft/sec)2 

Fz = 3,200 lb. 
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17. At spieds close to that of light, the theory of relativity plays an impor- 
tant role. One of the relativistic effects of high speeds is an increase in 
mass. If an object has a mass mo when at rest, then its relativistic mass 
m, when moving with velocity v is 

where c is the velocity of light, approximately 186,300 miles per second. 

a. Find the percent increase in mass of a unit particle when its speed is 
equal to 60 percent of the speed of light. 

Solution. Applying the given equation yieIds 

1 
P 

dTx3ii 
=-= 1.25. 

0.8 

The difference between the relativistic mass and rest mass gives the in- 
crease in mass, 0.25 or 25 percent. 

b. Find the percent change in the mass of an electron when its speed is 
equal to 80 percent of the speed of light. 

Solution. The relativistic mass of the electron is 

mo = - = 1.67m0 0.6 

Thus the change in mass is 1.67mo - mo = 0.67mo, or 67 percent increase. 

c. Plot a graph of the relativistic mass as a function of the ratio of particle 
speed v .to the speed of light e. How does your 
graph indicate that the speed of light is an unreachable speed? 

Assume a unit rest mass. 
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Solutio& 
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As the speed of the particle approaches the speed of light, the mass becomes 
increasingly large without bound, which means that the speed of light is a 
limiting speed that can never be achieved. 

18. This problem uses an interesting application of a binomial expansion 
to investigate the relationship between Newton's and Einstein's formulas 
for kinetic energy. The exploration of space outside our solar system will 
be feasible only if we can produce spacecraft that will travel nearly as fast 
as light. (Even if we could travel at the speed of light, it would require a 
little more than 4 years to reach Alpha Centauri, the closest star outside 
the solar system.) At speeds close to that of light, the theory of relativity 
changes the formula for kinetic energy Ex. Whereas in Newtonian me- 
chanics we have 

1 
2 EX = -tn0v2, 

Eg = (m. - mo)c*. 
the relativistic formula is 

At  first sight these formulas look quite different. We shall see, however, 
that the Newtonian formuIa can be regarded a5 an approximathi io the 
relatiiristic one. 

a. Verify that the binomial expansion of 

. 

1 = (1 - Z2)-1/2 m 
is 
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Solution. Using the binomial expansion for (a + b)", namely 

with a = 1, b = -z2, and n = - - i, we find 

2 4  2 4 6  

b. Use the first two terms of the expansion as an approximation to 
(1 - z*)-"~ and set z = v/c.  Show that the relativistic kinetic energy 
formula reduces to the Newtonian one. 

Solution. We are given that 
mo m. = 

Hence 

we have 1 Using 1 + as an approximation to 
4 1  - (y ' 2 c  

1 (m. - mo)e2 A -m0v2. 2 
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(We are using z Thus we 
have shown that the relativistic kinetic energy formula reduces approxi- 
mately to the Newtonian one when v is small compared with c. 

y to mean “2 is approximately equal to y.”) 

19. According to Einstein’s theory of relativity, if one system is moving 
rapidly with respect to another system, time passes more slowly in the 
moving system. Suppose that an astronaut is in a futuristic spacecraft 
that travels at the speed .ZI = 0.5c, where c is the speed of light. The astro- 
naut has a brother on Earth who was 1 year younger at the time of launch. 
The aging rate R, of the astronaut is related to the aging rate Rb of his 
brother by the equation 

How long must the astronaut travel so that upon his return to Earth, he is 
exactly as old as his brother? 

Solution. From the given equation, we get 

Expressed in another way, the astronaut’s clock moves more slowly than the 
same clock would move on Earth. While the clock advances 1 year on 

Earth, the same clock would advance only - years while moving at half 2 
the speed of light. Let z be the time needed. Then 

fl 

= (4 + 2 6 )  yr. 

As a check, if when the astronaut leaves Earth, the age of the brother is N, 
the age of the astronaut is N + 1. When the astronaut returns after 
(4 + 2fl) years of travel, the ages are 

A b  = N + 4 + 2 4 ~ .  

A a = N + 1 + 2  <3(4 + 2 4 )  

= N +  1 + 2 4 +  3 

= N + 4 + 26yr. 
20. Find the general equations required to solve problem 19 if the age of 
the brother is N and the astronaut is d years older. Apply the equations 
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to the case i i  which the brother is 20 years old and the astronaut is 5 years 
older. 

Solution. From problem 19, the number of Earth years needed is 

43 x = - p + d  

x ( 1 - 9  = d 

2d 2d(2 + 4) 
2 - 4 =  4 - 3  

X =  

= (4 + 2 4 ) d  yr. 

The ages of the brothers are 

A a = N +  ( 4 + 2 f i ) d  

-= N + 4d + 2 6 d  yr 
and 

A,  = N + d + 2 ( 4  + 2 6 ) d  

= N + 4d + 2 4 d y r .  

Because d = 5 and N = 20, 

and 
x = (4 + 2 4 ) 5  = 20 + 17.3 = 37.3 yr 

Aa = A, = 20 + 4(5) + 1 0 6  
= 57.3 yr. 

Thus the brothers will be the same age when the astronaut returns after 
traveling for 37.3 years at half the speed of light. 

21. At what velocity must the astronaut travel in order that he may age 
one-third as rapidly as his Earth-bound brother? 

Solution. From the equation in problem 19, 

08  ZI -c) 8 
9 

6 2.83 
3 3 VI:-  c = -C = 0.94~. 

Thus the astronaut must travel at 94 percent of the speed of light. 
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. .  

22. H6w would the rates of aging compare if the astronaut were able to 
travel at the speed of light? 

which implies that R, = 0. This would mean that those aboard a space- 
craft traveling at the speed of light would not age at all. 

23. The world’s champion weight lifter in 1968 lifted 1,280 pounds. If he 
were on the Moon and able to exert the same lifting force, what would be 
the Earth weight of the greatest mass that he could lift? 

Solution. As noted in previous problems, a mass on the Moon will weigh 
only one-sixth of its weight on Earth because gravity on the Moon is 1/6 
that of Earth. The Earth weight that the champion could lift would be 
6 x 1,280, or 7,680 pounds. 

24. According to Newton’s law of universal gravitation, the acceleration 
of gravity a t  a point in space varies inversely with the square of the dis- 
tance from the center of gravity of the primary body. Because the weight 
of a given mass varies directly with the local acceleration of gravity, as 
indicated in the equation w = mg, the weight of a body in space also varies 
inversely with the square of the distance from the center of the primary 
body. We can investigate this matter with the following computation. 

Let T = the distance from the center of gravity; g, = the acceleration of 
gravity at distance r;  R = the radius of the primary body; g R  = the accel- 
eration of gravity at the surface of the primary body ; wr = the weight of a 
mass at distance r; and WR = the weight of the mass at the surface of the 
primary body. Then, 

GMm F=-=ma da 
from which we obtain 

GM a=---  
da * 

At distance r, 

At distance R, 

Then, by division, 

50 



CHAPTER 3 RATIO, PROPORTION, AND VARIATION 

. 
Because w varies directly as g, we may also derive in a similar manner 

The acceleration of gravity at Earth’s surface is about 32.2 feet per second 
per second. 

a. Find the acceleration of gravity at an altitude of 100 miles above the 
surface of Earth. 

Solution. Because gR = 32.2, R = 3,960 miles, and T = 4,060 miles, we 
obtain 

= (0.975)* X 32.2 

= 0.95 X 32.2 = 30.6 ft/sec2. 

b. Find the weight of a 100-pound object at the altitude given in part a. 

Solution. Evidently W R  = 100 pounds. Using the previous computation, 

W r  0.95 X 100 lb = 95 lb. 

NOTE: This problem should illustrate the fact that although a body in 
orbit acts as though it were “weightless,” this lack of weight is apparent 
rather than real. Under what circumstances would a body be physically 
weightless? 

25. a. Find the acceleration of gravity at an altitude of 70 miles above the 
surface of the Moon. 

Solution. In a previous problem we computed that on the Moon g R  = 5.4 
feet per second per second. Also R = 1,080 miles and T = 1,150 miles. 

= (0.939)* X 5.4 

= 0.882 X 5.4 = 4.8 ft/sec2. 

b. At the same altitude as part a, find the weight of a mass with an Earth 
weight of 120 pounds. 

SoIution. If the Earth weight of the mass is 120 pounds, 

201 = 0.882 X 20 Ib = 17.6 lb. 
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26. Find the frequency of a simple pendulum on the Moon in terms of its 
frequency f on Earth if the frequency is given by the equation 

where g is the acceleration of gravity and L is the pendulum’s length. 

Solution. Because g on the Moon is only 1/6 as great as on Earth, we have 

27. In a game of skip rope a minimum speed of 60 revolutions per minute 
is required to keep the rope rotating. Find the minimum speed for “Moon 
children” using an identical rope. Assume that the “centrifugal” force 
necessary to keep the rope rotating is proportional to the square of the 
speed. 

Solution. Equating the ratios of force F to.the square of velocity v for the 
rope on Earth and on the Moon yields 

F a  - = -  F m  
vat vm2 

U s 2  = 600 rpm2 

u, = 24.5 rpm. 

28. The strength of a radio signal is inversely proportional to the square 
of the distance from the source of the signal. Consider a radio signal that 
is reflected by a spacecraft and picked up by a receiver on the ground. 
How does the strength of the signal at the receiving station vary with the 
altitude of the satellite? 

Solution. Let h be the altitude of the satellite. The intensity of the signal 
when it reaches the satellite may be written 

d o  I ,  = - h2 ’ 
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where Io is the strength of the source and c is a constant. The strength of 
the reflected signal when it returns to the Earth's surface can be written 

k l .  I ,  = - h2 ' 

where k is another constant. Hence 

CkIo I ,  = - h4 ' 

Thus the strength of the signal at the receiving station is inversely propor- 
tional to the fourth power of the altitude. 

29. How does the equilibrium temperature of a satellite vary with its dis- 
tance from the Sun? Base your answer upon the following assumptions: 
(a) The solar energy received from the Sun is inversely proportional to the 
square of the distance from the Sun, ( b )  the energy radiated by the satellite 
is directly proportional to the fourth power of its absolute temperature, 
and ( c )  temperature equilibrium is achieved when the energy received from 
the Sun is equal to the energy radiated from the satellite. 

Solution. If T denotes the distance from the Sun, then the energy received 
from the Sun can be written c/r2, when c is a positive constant. If T de- 
notes the absolute temperature of the satellite, then the energy radiated 
from the satellite is given by u T4, where u is another positive constant. In 
the case of temperature equilibrium we have 

Thus T = k/+, where the constant k is equal to the fourth root of c/o. 
Hence the absolute temperature of the satellite is inwrsely proportional to 
the square root of the distance from the Sun. 

30. The force of gravitation with which one body attracts another is 
inversely proportional to the square of the distance between them. Con- 
sequently, the pull of the Moon on the oceans is greater on one side of Earth 
than on the other. The Stin 
affects the tides similarly. Because the Sun exerts an enormously greater 
pull on Earth than the Moon, one might think that the Sun would influence 
the tides more than the Moon. Just  the opposite is true. How can this be? 

This gravitationai 'imbalance produces tides. 

Solution. Let N be the point on Earth nearest the Moon and let F be the 
point on Earth farthest from the Moon. We shall assume that the tide- 
raising force of the Moon is in some sense measured by the difference in the 
pull of the Moon on unit masses located at N and F. If r is the distance 
from the center of the Moon to N and if D, is the diameter of Earth, then 
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GM Mbeing 
(r  + De) 2’ 

the for6es acting at N and F are, respectively, - GM and rz 
the mass of the Moon and G the universal gravitational constant. The 
difference between these two forces is the tide-raising force, which we 
shall call Ft. Then, 

D, 
r Because - is very small, this expression is approximately 

Thus we would expect the tidal effect to be inversely proportional to the 
cube of the distance, whereas gravity is inversely proportional to the square 
of the distance. Because the distance from Earth to the Sun is enormously 
greater than the distance to the Moon, it is nat surprising that the Moon 
provides the dominant tide-raising force. Local horizontal components of 
this force cause the tides to roll in and roll out; Le., the horizontal move- 
ment of the water. 
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QUADRATIC EQUATIONS 

Quadratic equations are used in this chapter to analyze in detail the be- 
havior of sounding rockets both when launched and when returning to 
Earth. The lift generated by a wing is analyzed, and flying and landing 
speeds of a jet transport plane are computed. Other second-degree equa- 
tions are found in Chapter 3. 

PROBLEMS 

I. The height s of an object t seconds after being given an upward velocity 
of II feet per second from an altitude h is given by the formula 

8 ut - 16t2 + h 

Determine when a toy rocket fired with an upward velocity of 80 feet per 
second from a 624-foot cliff will be 224 feet below the cliff. 

Solution. When the rocket is 224 feet below the cliff it will have an altitude 
of 624 - 224, or 400 feet. Applying the given formula yields 

400 = 80t - 16t2 + 624 

0 = lbt* - 80t - 224 

= 16(t2 - 5t - 14) 

= 16(t + 2)( t  - 7 )  

t = -2, 7. 

me -2 seconds is extraneous : hence the toy-rocket will be. 224 feet below 
the cliff 7 seconds after firing. 

NOTE: If another 
rocket had been fired from an altitude of 400 feet, 224 feet lower, a firing 
2 seconds earlier would have been necessary to make it follow the above 
trajectory. That is, it would have been at 400 feet twice, both at the be- 
ginning and end of the flight. One can verify that the initial velocity re- 
wired in this instance would have been 144 feet per second. 

The solution of -2 seconds can be given a meaning. 
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2. The acceleration of one sounding rocket is two-thirds that of a second 
rocket. After 4 seconds 
the second rocket is 96 feet higher than the first. Given that distance = 
I/sz (acceleration) (time) :, find the acceleration of both rockets. 

Both are launched vertically a t  the same time. 

Solution. Let s + 96 and a be the height and acceleration, respectively, of 
the higher rocket, while s and (2h) a represent the same quantities for the 
other rocket. Substituting into the given formula yields 

1 
8 + 96 = 2(0)(4)' 

and 
8 = u)(4)? 

Subtracting equations yields 

8 
3 

x - a  

u = 36. 

Thus the second rocket has an acceleration of 36 feet per second per second, 
whereas the first rocket's acceleration is (9!!)36 = 24 feet per second per 
second. 

3. A sounding rocket is thrust vertically upward with an initial velocity 
vo. The height h of the rocket at time t is equal to the height it would attain 
in the absence of gravity vot minus the free-fall distance due to gravity 
gt2/2. !rhus 

st2 h = VOt - - 2 '  

We are neglecting air resistance and the variation of g with altitude. Show 
that the rocket attains a maximum height of vO2/2g and that this height is 
attained at time v o / g .  

I C ?  

Solution. We complete the square. 

If t#vo/g, then the second term is strictly negative and consequently 
h<vo2/2g. If, on the other hand, t = vo/g, then h = vo2/2g. 
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* 

4. Suppose a model rocket weighs one-fourth of a pound ; its engine propels 
it vertically to a height of 52 feet and a speed of 120 feet per second at 
burnout. If the parachute fails to open, what will be the approximate time 
to fall to Earth, according to the following equation for free fall in vacuum. 

The free-fall equation is 
1 h(t) = ho + vot - p 2 ,  

where h (t) is the height at time t, ha and va are the height and velocity at 
the time selected at t = 0, and g is approximately 32 feet per second per sec- 
ond. Note that vo should be assigned a positive (negative) value if the 
object is moving upward (downward) at t = 0. 

Solution. The altitude at time t is h ( t )  = 52 + 120t - 16t2; ground is 
reached when h (t) = 0. Hence, 

or 
0 = 166 - 120t - 52 

0 = 4t' - 30t - 13. 

30 f d302 + (16 X 13) 
8 

Thus 
, t =  

Because we reject t < 0, we have 
1 

t = $30 + J900 + 208) 

= l(30 + 10 m) 8 

= 7.91 sec. 

5. The lift generated by a wing is given as 

L = CL$V'S 

where 
p is the density of air (0.002378 slugs/ft3) (a mass of 1 siug weighs 

v is the forward velocity in feet per second, 
S is the wing area, and 
CL is an experimentally determined constant called the lift coefficient. 

32.2 lb at the surface of Earth), 

One model of the Boeing 727 jet transport weighs 142,500 pounds and has 
a wing area of 1,550 square feet. In the landing configuration, the maxi- 
mum lift coefficient is 3.2. At what speed does the aircraft land? (As- 
sume that landing speed is 1.1 times the minimum flying speed.) 
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Solution. The minimum flying speed would be 

CL, PS 
2 (142,500) 

= 43.2 (0.002378) (1,550) 

= 155.5 

The landing speed is (1.1) (155.5 feet per second) = 171 feet per second 
= 117 miles per hour. 
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Some of the principles of elementary probability theory and simple com- 
binatorials are applied in this chapter. The problems involve primarily 
the number of combinations of n objects taken r a t  a time, and independent 
events. Of special interest is the application of probabilities in determin- 
ing the reliability of spacecraft systems. 

PROBLEMS 

1. Suppose 21 astronauts are available for the lunar landing program and 
12 have had orbital experience. 

a How many crews of three can be made up? 

Solution. Because in this problem the order of arrangement of the men in 
the crews is immaterial, it is necessary to use a combination rather than a 
permutation. Using ( :) to denote the number of combinations of n things 

taken T at a time, we have 

21! = 1,330. (“3;) = 3!(21 - 3)! 

Thus 1,330 crews of three men’each can be made up. 

b. How many crews of three can be made with at least one experienced 
and one inexperienced man on each crew? 

Solution. There are two cases to be considered here: We can have two 
experienced and one inexperienced or one experienced and two inexperi- 
enced astronauts make up the crew of three. 

To get the number of crews of two experienced men and one inexperienced 

man, we count (‘2”) = 66 ways of choosing two men from the 12 with 

experience, and for each such choice, there are = nine ways of choosing 
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one man from the nine without experience. Hence, there are 

= (66) (9) = 594 different three-men crews having two experienced and 
one inexperienced astronaut. 

Similarly, there are ) = 12 (36) = 432 different three-man crews 

with one experienced and two inexperienced astronauts. Hence the total 
number of possible crews is 594 + 432 = 1,026, 304 less than the number 
of possible unrestricted crews. (See problem la.) 

(‘t) ( 

NOTE: 
teams are selected by chance. 
of the selection. 

The reader should not infer from this problem that astronaut 
Many other factors enter into the making 

2. The electronic telemetry system aboard a spacecraft transmits data of 
spacecraft motion in the 2, y, and z directions. The system consists of three 
motion sensors, a signal conditioner, and a transmitter. The probability of 
failure for each motion sensor and for the signal conditioner is 0.0001. 
The probability of failure for the transmitter is 0.001. Assuming that 
component failures are independent events a?d that the failure of any 
component will render the telemetry system inoperative, compute the 
probability of a spacecraft telemetry success. 

Solution. The probability of success is equal to one minus the probability 
of failure. Therefore, the probability of success for each sensor and the 
signal conditioner is 

P = 1 - o.oO01 

= 0.9999. 

Similarly, the probability of success for the transmitter is 

P = 1 - 0.001 

= 0.999. 

The probability of success for the telemetry system is the product of prob- 
abilities of success for each component; that is, 

P = (0.9999)*(0.999) 

= 0.9986. 

3. The Service Module engine, whose thrust provided the velocity changes 
needed to control the Apollo 8 spacecraft in lunar orbit on Christmas Day 
1968, has been described as an extremely reliable engine with a failure to 
start occurring about “once in a million times.” During the Apollo 8 mis- 
sion, the 20,500-pound-thrust engine was started seven times. Write an 
expression for the probability of success of the engine on the mission. 
Note that each start of the engine is an independent event. 
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Solution. Because the probability of failure is “one in a million times,” 
0.000001, the probability of success for each start is 1 - 0.000001, 
0.999999. The probability of success on seven consecutive starts is 

P = (0.999999)’ 

= (1 - 0.000001)7 
7 . 6  
2 . 1  =E 1 - 7(0.000001) + -(0.000001)2 - * * * 

= 1 - O.OOO007 0.999993. 

(We have used the binomial theorem to do this evaluation.) 

4. A pilot who was forced to land because of an electrical malfunction 
his radar equipment is told that an improvised repair was made and that 
there is a 25 percent chance that the radar will fail before he reaches his 
home base. The weather report for his home base is as follows: 90 per- 
cent chance of complete overcast, 50 percent chance of foggy conditions, 
and 20 percent chance of rain. Consider each condition independent of the 
others. 

or 
or 

in 

a. The pilot is willing to risk a 10 percent chance of landing in the rain 
with the radar inoperative. Should he proceed or should he wait for a 
more favorable weather report? 

Solution. The probability of the pilot’s having to land in the rain with the 
radar out is the product of the probabilities of the two events, which is 

p = p r a i n p d a r o u t  

= (0.20) (0.25) 

= 0.05. 

The risk of 5 percent is less thansthat which the pilot is willing to take. 
Thus the pilot would proceed to his home base. 

b. Determine the probability that the pilot will land in foggy and overcast 
conditions with the radar operating. 

Solution. The probability of three independent events occurring is the 
product of the probabilities of the events ; that is, 

P = p f o g  Pove-t Prwiar operating 

= (0.50) (0.90) (1 -- 0.25) 

= 0.3375 or 0.34. 

e. What is the probability that the pilot will land in the rain with foggy 
and overcast conditions while the radar is inoperative? 
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Solution. T6e probability of these four independent events occurring is 

p = Prsin prog poverc,, Pradar out 

= (0.20) (0.50) (0.90) (0.25) 
= 0.0225 or 0.02. 

d. Determine the probability that the pilot will land with clear, sunny 
conditions and with the radar operating. 

Solution. The desired probability is 
P Pno ovarcast Pno rain Pno fog Pr~dar operating 

(1 - 0.90) (1 - 0.20) (1 - 0.50) (1 - 0.25) 
= 0.037 or 0.04. 

5. An aerosp ce consulting company is working on the design of space- 
craft system composed of three main subsystems, A, B, and C. The re- 
liability, or probability of success, of each subsystem after three periods of 
operation is displayed in the following table: 

1 day Sl/, months 8?42 months 
A -__ 0.999'7 0.8985 0.6910 
B ____-- 1.0000 .9386 .7265 
C ___- .9961 .9960 3959 

These reliabilities have been rounded to four significant digits. For ex- 
ample, subsystem B could fail during the first day of operation, but the 
likelihood of failure is so remote that m.ore than four significant digits are 
needed to indicate it. If Ps is the total probability of success of the system, 
find PB for each of the three time periods. 

Solution. For the first 24 hours, 
PS = PAPBPc 

= (0.9997) (1.0000) (0.9961) 

= 0.9958 
For a period of 31/3 months, 

Ps = PAPBPC 
= (0.8985) (0.9386) (0.9960) 

= 0.8399 
For a period of 8Yz months, 

Pa = PAPBPc 
= (0.6910) (0.7265) (0.9959) 

= 0.4999 
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6, Inkroblem 5 we saw that the total reliability of the system deteriorates 
rather rapidly in its present stage of design, with less than a 50 percent 
chance that it will operate after 8?4 months. The reliability of subsystem 
C remains nearly constant, whereas the greatest decline in reliability takes 
place in subsystem A, which contains one particular part that is expected 
to wear out rapidly. The consulting firm is asked whether enough improve- 
ment could be made in subsystem A to provide a reliability after 8?/.. months 
of 0.7500. Compute the improvement needed in subsystem A. 

Solution. Let 2 be the factor by which the reliability of subsystem A 
must be multiplied. Then, as before 

PS = PAPBPC 

0.7500 = (0.6910~) (0.7265) (0.9959) = 0.4999~ 

0.7500 
0.4999 z.= - = 1.500 

The reliability of subsystem A must be 1.500 x 0.6910 = 1.037. The in- 
crease in reliability cannot be obtained by improving subsystem A alone, 
because the reliability cannot be greater than 1. 
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WONENTIAL' AND LOGARITHMIC FUNCTIONS 

The 12 problems in this chapter range from simple topics such as the half- 
life of a radioisotope power supply to the more challenging applications of 
logarithmic and exponential functions found in multistage rocket design. 
To work successfully through the set of problems, it is necessary to derive, 
solve, and write exponential and logarithmic equations. 

Other topics upon which problems are based are sound intensity and the 
decibel unit of measure, atmospheric pressure at varying altitudes, radio- 
active materials, and electron beam intensity. A number of problems in- 
vestigate the relationship of mass and mass ratios of a rocket, the impos- 
sibility of orbiting a payload with a single-stage rocket, the characteristics 
associated with multistage rockets, and the actual design of a two-stage 
launch vehicle. 

PROBLEMS 

1. The difference in intensity (energy) level of two sounds with intensities 
I and Io is defined to be 10 log ( I / Z o )  decibels, where Io is the minimum in- 
tensity detectable by the human ear. When two sounds differ in intensity 
by a factor of 10, they differ in loudness by 1 bel ; a difference of 100 means 
a loudness difference of 2 bels. In practice the unit used is the decibel, 
one-tenth of a bel. Find the intensity level in decibels of the sound pro- 
duced by an electric motor which is 189 times greater than Io. 

Solution. Substituting 1891, for I, we have 
I 18910 10 log - = 10 log - Io I o  

= 1042.28) 

= 22.8 

Thus the intensity level is 22.8 decibels. 

2. Testing a rocket engine for a certain spacecraft on the launch pad, the 
noise level is found to be 100 decibels outside the spacecraft and 45 decibels 
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inside. How many times greater is the noise intensity outside the space- 
craft than iriside? 

Solution. 

and 
Let 2 = intensity level outside 

y = intensity level inside. 
Then 

and 
100 = 10 log 2 

45 = 10 log y. 

Subtracting the equations and solving for the ratio z/y gives 

55 = lO(l0g 2 - log y) 
X \ 

5.5 = log - 
Y 

X --= rtntilog of 5.5 = 105*5 
Y 

= 316,230. 

Therefore, the noise intensity on the outside is approximately 316,000 times 
greater than that on the inside of the spacecraft. 

3. An approximate rule for atmospheric pressure at altitudes less than 50 
miles is the following: Standard atmospheric pressure, 14.7 pounds per 
square inch, is halved for each 3.25 miles of vertical ascent. 

a. Write a simple exponential equation to express this rule. 

Solution. Letting P denote the atmospheric pressure at altitudes less than 
50 miles and h the altitude, we have 

P = 14.7 Ib/i2 - tY3-" mi 

b. Compute the atmospheric pressure at an altitude of 19.5 miles. 

Solution. Using the equation derived in part a, 
19.5 mi/3.25 mi 

P = (14.7 lb/in2)($) 
\Y 

= (14.7 Ib/in2)(i)6 

(14.7 lb/ii2)gq 1 

= 0.23 lb/in2. 

e. Find the altitude at which the pressure is 20 percent of standard atmos- 
pheric pressure. 
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Solution. Solving the derived equation for h, we have 

113.25 mi 
-(14.7 1 Ib/in2) = (14.7 lb/in2)(;) 

1 = ( i p . 2 5  mi 

5 

5 

1 h 1 

1 (3.25 mi) log 5 
1 
2 

h =  
log - 

= 7.54 mi. 

d. What altitude is just above 99 percent of the atmosphere? 

Solution. Because pressure and density are proportional, the desired alti- 
tude is the point at which the pressure is 1 percent of standard atmospheric 
pressure. Hence 

1 hf3.25 mi 
(0.01) (14.7 Ib/in2) = (14.7 lb/ii&) 

log 0.01 = (A) Iog 5 1 

(3.25 mi) log 0.01 
1 h =  

log 5 
- (3.25 mi) (-2) 

= 21.6 mi. 

- 
-0.301 

4. A certain radioactive material decays at a rate given by the equation 

where A is in grams and t is in years. 
grams when t is 1,000 years. 

If A. is 500 grams, find k if A is 450 

Solution. Applying the given equation and solving for k yields 
450 g 3 500 g )( 10k(--1*000 Yr) 

log 450 = log 500 - lc(1,OOO yr) (log 10) 
k(1,000 yr) = log 500 - log 450 

= 0.0458 
2.6990 - 2.6532 

IC = 0.000aQ58/yr. 
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- 
5. The intensity of a beam of radiation after passing through a material 
is given by the equation 

I = l o  lo-k', 

where Io is the original intensity, t the thickness in centimeters, and k an 
absorption coefficient. If a beam of gamma radiation is reduced from 1 
million electron volts to 100,000 electron volts while passing through a sheet 
of material with k = 0.08, find the thickness of the*material. 

Solution. Using the given values and solving for t gives 
106 = (10~)1o-0~0*~ 
1 - = 10-0.08' 
10 
1 
10 log - = -0,Ogt log 10 

-1 t = -  
-0.08 

= 12.5. 

Thus the thickness is 12.5 centimeters. 

6. A satellite has a radioisotope power supply. The power output in watts 
is given by the equation 

where t is the time in days and e is the base of natural logarithms. 

a. How much power will be available at the end of 1 year? 

p 5&-WJ50 

Solution. Applying the given equation, we have 
p = 5@+651250 

= m 1 . 4 6  

= 54) X 0.232236 
= 11.6. 

Thus approximately 11.6 watts will be available at the end of 1 year. 

b. What is the half-life of the power supply? In other words, how long 
will it take for the power to drop to half its original strength? 

Solution. To find the half-life, we solve the equation 

for t and obtain 
25 = 5 & - ~ 5 0  

--t 250 - In 0.5 -- 
= -0.69315 

t = 250 X 0.69315 
= 173. 
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Thus the half-life of the power supply is approximately 173 days. 
that In z is a shorter expression for logd z.) 

e. The equipment aboard the satellite requires 10 watts of power to operate 
properly. What is t h e  operational life of the satellite? 

(Note 

Solution. Solving the equation 

for t gives 
-t 10 
-=Ins 250 

= In 0.2 

= - 1.60944 

t = 250 X 1.60944 

= 402. 

Hence the operational life of the satellite is 402 days. 

7. The velocity gained by a launch vehicle when its propellant is burned 
to depletion is expressed by the equation 

v = c log. R. 

The velocity gained during the burn is 8, the exhaust velocity is c, e is the 
base of natural logarithms, and R is the mass ratio. Because some high 
school students may not be acquainted with natural logarithms (base e), it 
may be convenient to use the rule for changing the base to express the given 
equation in base 10, the base of common logarithms. The conversion of 
natural logarithms to logarithms on the base 10 simply involves multiplica- 
tion by a fixed number, because 

log, R (log, 10) (log10 R) .  

The conversion factor loge 10 is, like T and e, a transcendental number. To 
two decimal places, log, 10 = 2.30. Thus our equation can be replaced by 
the approximate equation 

I )  = ~(2.30) loglo R. 

The mass ratio R is defined by R = - takeoff weight This definj?jon gp- burnout weight' 
plies whether we are considering the entire launch vehicle or just a single 
stage. The takeoff weight consists of propellant or fuel F, structure S, and 
payload P. Thus the mass ratio may be written as 

F + S + P  
S + P  ' 

R =  

At burnout all of the fuel has been used and F = 0. It has been found that 
the weight of fuel cannot be more than about 10 times the weight of the 
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structure, beiause if the structure is too weak for the weight of fuel carried, 
the vehicle may not stand the stresses of operation. Thus the largest pos- 
sible value for R is 

Because 

1os+ s+  P - llS+ P 
S+P - S + P  - 

11s + P - - 11s + 11P - 10P 
s + p  S + P  

we see that the largest possible value for R is 11. Unfortunately, for R to 
be equal to 11, P must be zero; i.e., a vehicle designed with R = 11 has no 
mom for a payload. 

The minimum altitude for a stable orbit about Earth is about 100 miles. At 
lower altitudes, air resistance slows the spacecraft and causes rapid deterio- 
ration of the orbit. As will be noted in Chapter 10, the orbital velocity at 
100 miles is nearly 17,500 miles per hour or about 25,600 feet per second. 
The rocket equation gives the ideal velocity, and ignores losses resulting 
from the pull of Earth's gravity and the resistance of the heavy atmosphere 
surrounding Earth at low altitudes. The total drag losses are of the order 
of 4,000 feet per second for a launch to a 100-mile orbit, so that the total 
velocity imparted by the launch vehicle must be 25,600 + 4,000 = 29,600 
feet per second, which we shall round for convenience to 30,000 feet per 
second. If the highest energy propellant available for takeoff from the 
surface of Earth has an average exhaust velocity of 9,600 feet per second, 
compute the performance of a launch vehicle with R = 11. 

Solution. Substituting c = 9,600 feet per second' and R = 11 in the rocket 
equation, we obtain 

u = (9,600)(2.30) log 11 

= (!22,080) (1.04) 

= 22,960 or 23,000 ft/sec. 
\ 

Thus the launch vehicle cannot fly itself, much less a payload, into Earth 
orbit. An additional velocity of 7,000 feet per second is needed. 

8. R%at exhaust velocity mast the propeihnt supply to place the Iaunch' 
vehicle from the previous problem in orbit? 

Solution. Solving the equation 

30,000 ft/sec = c(2.30) log 11, 
we get 

30,000 ft/sec 2.30 log 11 C =  

= 12,500 ft/sec. 
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Exhaust velocities of 12,500 feet per second and more are available from a 
mixture of liquid hydrogen and liquid oxygen. However, large engines 
suitable for using this propellant mixture for launches from the surface of 
Earth have not yet been perfected. 

9, It is apparent from the rocket equation that the burnout velocity in- 
creases when the mass ratio increases. We can get a higher mass ratio by 
using a solid propellant because the stiff rubberlike propellant mass serves 
as part of the structure. If no payload, or a very small payload, is included, 
a solid-propellant rocket could have a mass ratio of about 19. A typical 
average exhaust velocity for a solid propellant might be about 8,000 feet 
per second. Could this launch vehicle achieve a 100-mile Earth orbit? 

Solution. Using the rocket equation, 

o = (8,000)(2.30) log 19 

= (18,400) (1.28) 
= 23,550 or 23,600 ft/sec. 

The speed achieved is much less than that needed for orbit. 

10. The solution to the problem pointed out in the previous examples is to 
use staging. That is, the launch vehicle is divided into two or more parts 
or stages. As soon as the propellant has been all burned in the first stage, 
there is a brief coast during which the heavy motors and structure in the 
first stage are jettisoned and permitted to fall into the ocean. Freed from 
this deadweight, the second-stage motors are much more effective; the 
same procedure is repeated for the remaining stages. 

Let us design a two-stage vehicle to place a payload into Earth orbit. We 
shall make three assumptions : (1) that the structure weight of each stage 
is 10 percent of the fuel weight, the remaining weight being payload; (2) 
that the gain in velocity is divided equally among the stages, each contrib- 
uting 15,000 feet per second to the required final velocity of 30,000 feet per 
second; and (3) that all stages use the same propellant with an exhaust 
velocity of 12,000 feet per second. This third assumption in particular is 
*mealistic because no first-stage propellant in use today produces 8s ex- 
haust velocity this high, whereas second- and third-stage propellants pro- 
duce higher exhaust velocities than this. However, an assumed exhaust 
velocity of 12,000 feet per second is satisfactory as an overall average. 
The total weight at liftoff is to be 100,000 pounds. 

Solution. First stage: 
o =.i ~(2.30) log Rr 

15,000 (12,000) (2.30) log Ri 
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.1 

log Ri = 27,600 l5 Oo0 = 0.543 

Ri E 3.492 = 3.5 

Fi 4- Si 4- Pi = 3.5 

100,OOO 
S I +  PI R1 

= 3.5 =&+PI 

SI +Pi = - loOoOO - - 28,600 3.5 
F1 = l00,OOO - 28,600 == 71,400 

By assumption (1) , 
Si i=' (0.10)(71,400) = 7,140 Ib 
Pi s 28,600 - 7,140 = 21,460 Ib. 

Nom: 
remaining weight, including the entire second stage and orbital payload. 

The payload of 21,460 pounds for the first stage includes all of the 

15,000 log R2 = 27,600 0.543 
Second stage: 

F2 

82 i=: (0.10)(15,300) 1,533 
21,460 - 6,130 = 15,330 

P2 = 6,130 - 1,533 = 4,597 or 4,600 Ib. 

Our design for the two-stage launch vehicle may be checked as follows : 

Total ________-__-_ --__ 86,730 - 
Weight of structure: 

8 1  --------c- -I --I__-- .7,145 . 
S2 PI_-. --___ 1,533 

Total ________________I_ -__ 8,673 
Weight of orbital payload __________________-__ 4,597 

Total weight of vehicle ______I-- 100,000 

- - 
Thus, although the single-stage launch vehicle discussed in problem 7 could 
not place any payload into orbit, this two-stage vehicle can place nearly 5 
percent of its weight into Earth orbit. 
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11: &ow that when all stages use the same propellant, the total mass ratio 
of a multiple-stage launch vehicle is equal to the product of the individual 
mass ratios. 

Solution. Indicate the burnout velocities and mass ratios of the first, 
second, third stages, etc., by the subscripts 1, 2, 3, etc. Then, using a 
three-stage vehicle as an example, 

VI  + US + va 2.30~ log R1 + 2.30~ log RI + 2.30~ log Ra 

(2.3oe)(log RI + log Rz + log Ra) 
v (2.30e)(log R1R&!3) 

NOW: Making the structure stronger so that it can support large pay- 
loads reduces the mass ratios. However, if we have several stages, the 
total mass ratio can become very high, producing much greater perform- 
ance. 

12. Using the equation derived in problem 11, show that the launch vehicle 
constructed in problem 10 can indeed orbit its payload. 

Solution. Given RlR2 = (3.5) (3.5) = 12.25 

v = 2.30~ log 12.25 

= (2.30) (12,000) (1.09) 

= (27,600) (1.09) 
= 30,084 or 30,000 ft/sec. 

The launch vehicle will impart sufficient velocity to overcome drag losses 
and insert the payload into a 100-mile Earth orbit. Note that dividing the 
launch vehicle into stages increases the overall mass ratio to 12.25. 
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GEOMETRY AND RELATED CONCEPTS 

The analysis of many mathematical problems involves geometrical concepts 
that are not always apparent. The 13 problems contained in this chapter 
range from the pure and obviously geometrical problems to some which 
seem, at first reading, only vaguely related to geometry. 

In the first category are problems concerning solar cells, area and load on 
the feet of a Moon landing craft, and the distance to the horizon from a 
given altitude above Earth or the Moon. 

Problems based on geometry but more algebraic in nature include trans- 
forming a rectangular map into an isosceles trapszoidal map, relationships 
of volumes and areas in spacecraft pressure and storage tanks, measuring 
the diameter of the Moon and Sun, determining the period of a planet, and 
measuring the distance between Earth and Mars. 

PROBLEMS 

I. Solar cells convert the energy of sunlight directly into electrical energy. 
For each square centimeter of solar cell in direct overhead sunlight, about 
0.01 watt of electrical power is available. A solar cell in the shape of a 
regular hexagon is required to deliver 10.4 watts. Find the minimum 
length of a side. 

Solution. The total area required is 10.4 watts/O.Ol watt per square cen- 
timeter, or 1,040 square centimeters. The regular hexagon can be parti- 
tioned into six congruent equilateral triangles, each with an area of 
1,040/6 = 173 square centimeters. 

t 
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The area A df any equilateral triangle with side s' may be expressed 
1 
2 A = -(base) (altitude) 

8 4  = - . - a  
2 2  

Solving for s, we have .=e 
= d i i E Z  
= 20cm. 

2. Solar cells are made in various shapes to utilize most of the lateral area 
of satellites. A certain circular solar cell with radius r will produce 5 watts. 
Two equivalent solar cells are made, one being a square with side s and the 
other an equilateral triangle with side p. Find r in terms of p and also in 
terms of 5. 

Solution. For. the solar cells to have equivalent outputs, their areas must 
be equal. Thus for the circle and square, we have 

Asimb = Aacluue 

mL = 8% 

S 
t = -  4 

= 0.564s. 

For the circle and equilateral triangle, we have 
Acirde = Aequileterai triangle 

= 0.371~. 

3. A spacecraft is to be soft landed on the Moon with a maximum impact 
force of 1,500 pounds. Three legs, each with a large circular foot, will s u p  
port the spacecraft after Ianding. As a safety factor, i t  is assumed that 
the Moon's surface will support a maximum of 1.5 pounds per square inch. 
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- 
Allowing for a possible 50-percent overload on any foot, determine the min- 
imum radius of the foot. 

Solution. Each foot must be able to support 500 pounds pIus a 250-pound 
overload. Hence, the minimum area A for each foot is 

750 lb 
A = 1.5 lb/in* 

= # 5 o o b 2  

and the radius of the foot is 
mi$ = f l Z  

= 12.6 in. 

4. Because a sphere has the minimum surface area for a given volume and 
a spherical container has the maximum strength for a given thickness of 
metal, spherical tanks are often used on spacecraft to hold pressurized 
gases and propellants. It is decided for a certain application that the vol- 
ume of a spherical tank must be doubled. What increase is required in the 
radius ? 

Solution. Let T and R be the radii of the smaller and larger tanks respec- 
tively. Then, 

4 v - f l 3  
3 

Dividing, 
2V = irRs.  

RS = 2r3 

R = f i r  = 1.26~. 

5. Consider a spherical tank of radius T, and a cylindrical tank with radius 
R and altitude equal to the diameter 2R. 

a, Corny& R iz terns af T if the 379lumes Qf the %.wo tanks ore equal. 

Solution. If R is the radius of the cylindrical tank, then 

V = uR2 X 2R = &R3. 

Because the volumes are equaI, 
2?r~3 = +3 

R = g r  = 0.874r. 
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b. How do the surface areas of the two tanks compare? 

Solution. The area of the cylinder is 

= & ~ ~ ( 0 . 8 7 4 ) ~  

= 14.4T'. 

The area of the sphere with equal volume is 

A = k 2  

= 1 2 . 6 ~ ~ .  

Thus the surface of the sphere is about 87.5 percent of the area of the cyl- 
inder. 

6. A spacecraft is at P, at an altitude h above Earth's surface, as pictured 
in the accompanying drawing. The distance to the horizon is d, and T is 
the radius of Earth. 

P 

a. Derive an equation for d in terms of T and h. 

Solution. Because PA is tangent to the circle at A, angle P A 0  is a right 
angle. Then 

T~ + d2 = (T + h)2 
d2 = (T + h)2 - T~ 

= 2Th + h2 

d = m .  

b. Find the distance to the horizon if h = 100 miles. Use 3,960 miles for 
the radius of Earth: 
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Solution. 
d = t/2(3,960)(100) + 

= 896 mi. 

e. It is apparent that for near-Earth orbits, h will be small in comparison 
with r, so that discarding the h2 term introduces only a small error. The 
formula then simplifies to d = m. Find d with the simplified formula, 
and compute the percent of error that results when the h2 term is dropped. 

Solution. 
d = 4 2  (3,960) (100) 

=lhFij.E 
= 102455 

= 89Omi. 

6 
896 The percent of error is - = 0.0067 = 0.67 percent. 

7. Solve problem 6 with respect to the Moon’s horizon for a spacecraft 70 
miles above the surface of the Moon. Use 1,080 miles for the radius of the 
Moon. 

Solution. 
d = d2(1,080)(70) + (70)2 

= 1Odiiz 
= 395mi: 

d = 4 2  (1,080) (70) 

=- 

= l O % E i  
= 389mi. 

6 The percent of error is - = 0.015 = 1.5 percent. 395 

8. Some phases of instrumentation mapping on space shots require that a 
rectangular map be transformed into an isosceles trapezoid map with the 
same height and perimeter. Consider the following problem. 
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Transform the rectangle with sides A and B into an isosceles trapezoid with 
sides L and bases K and B + C. The perimeter P and height A must re- 
main constant. (Note 
that the lower base increases by an amount C, whereas the upper base de- 
creases by an amount N, where N > C.) 

Find the new length K in terms of A, B, and C. 

Solution. Equating the perimeters, we have 
prect.nsle Ptrapezoid 

2 A + 2 B =  ( B + C ) + K + 2 L  

K = 2A + 2B - (B + C )  - 2L. 

Note that B = K + N, or N = B - K.  Applying the Pythagorean theorem, 
we have 

L = J - = & P + (  B - K +  9- 
Then 

K = 2 A + 2 B - B - C - 2  .- A 2 +  
or 

K - 2 A - B + C = - 2  

Squaring both sides and simplifying, we have 

[-2A - (B - K - C)J2 = 4A2 + (B - K + 
2BC - 2KC = 4AB - 4AK - 4AC - 2BC+ 2KC 

-4KC + 4AK = 4AB - 4AC - 4BC 

=(A - C )  = 4(AB - AC - BC) 

AB - AC - BC 
K =  A - C  

9. The average angle subtended by the Moon for an observer on Earth is 
0.62" or 0.00907 radian. If the average distance from an observer on 
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Earth to the center of the Moon is known to be 384,400 kilometers, find the 
diameter of the Moon. Assume POM is a right triangle. 

Solution. Using the tangent function, the radius of the Moon MP is found 
to be 

MP = (tan 0.26O) (384,400 km) 
= (0.00454) (384,400 km) 
= 1,745 km, 

and the diameter of the Moon is 2MP = approxilnately 3,490 kilometers, or 
2,168 miles. The accepted diameter is 2,160 miles. 

Alternate solution. Because 0.00907 radian is such an extremely small 
angle, the length of the arc it subtends very closely approximates the radius 
of the Moon. Using the formula S = re, where S is the length of a circular 
arc, r is the radius of the circle, and 8 is the radian measure of the angle 
subtended by the arc, the diameter is found to be 

D, = (384,400 km) (0.00907) 

= 3,487 km or 2,167 mi. 

10. The average angle subtended by the Sun for an observer on the surface 
of Earth is 0.533". Assuming that the diameter of the Sun is 866,000 
miles, find the distance from the surface of Earth to the center of the 
Sun. Assume OCT is a right triangle. 

T 

Solution. Consider the right triangle OCT. Because the total angle sub- 
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tended by the Sun as viewed by an Earth observer is 0.533") angle TOC is 
one-half the angle subtended or 0.26'7". 

The distance OC between Earth's surface and the center of the Sun may be 
calculated by using the tangent function : 

TC or OC=,ane TC - t a n g = -  oc 

433'000 mi = 92,900,000 mi. = 0.00466 

11. Determine the period of revolution of the planet Mars about the Sun. 
The period of Earth is 365 days (approximately), and Earth and Mars are 
in opposition (Earth is directly between the Sun and Mars), about every 
'780 days. 

We know according to Kepler's laws that the period of Mars is greater than 
the period of Earth because the radius of orbit is greater for Mars. 

NOTE : The period of Mars is less than 1,000 days. 

Solution. Let S, El, MI and S, E,, M2 represent the positions at the first 
and second oppositions as indicated in the figure. 

S El 

Each day, Earth moves an angular distance of (360"/365). Thus in the 
780 days between oppositions, Earth moves an angular distance of 780 
days X (360"/365 days) = 769". Accordingly, angles EISEB and M,SMB 
= 769' - 920" = 49". between oppositions Mars muves aii izagiiai. dis- 
tance of 360" plus 49", or 409". Therefore the period of Mars is 

360" 
409" 780 days - = 686.5 days. 

Note that if we assumed Mars moves only 49" between oppositions, the 
period would be greater than 5,000 days. On the other hand, if we assumed 
Mars moves 2 (360") + 49", its period would be equal to that of Earth, 
which is impossible because the radius of orbit for Mars is greater than 
that of Earth. 

85 



CHAPTER 7 GEOMETRY AND RELATED CONCEPTS 

. 
12. Determine the distance between the Sun and Mars in astronomical 
units, AU. One AU is the mean distance from Earth to the Sun. We are 
given that 106 days after Mars is in opposition (see previous problem), the 
Sun, Earth, and Mars form a right triangle with the right angle at Earth. 

Solution. 

Angle EzSMz is equal to angle a - p ,  where a is the angle through which 
Earth has moved, 

360" 
a! '06 days 365 days 

= 104.5q 

and p is the angle through which Mars has moved, 

360" 
687 days @ = 106 days 

= 55.5O. 

me distance SM2 between the Sun and Mars in astronomical units is 

wx (a - 8) E s e ~  49" = 1.52. 

13. From Earth, the planet Mercury appears to oscillate about the Sun, ap- 
pearing at elongation (its maximum angular distance from the Sun as seen 
from Earth) every 58 days. Earth and Mercury revolve 'in the same 
direction, counterclockwise as viewed from the north pole of the Sun. De- 
termine the period of revolution of the planet Mercury. 
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Solution. An elongation occurs at SEIM1. Fifty-eight days later Mercury 
is at elongation on the other side of the Sun, and another 58 days later it is 
at the elongation SEzMz. During the 116 days Mercury has traversed one 
revolution plus the arc HIM*. Earth has traversed in 116 days the angular 

distance 116 360" = 114". Now the triangles SEIMl and SE2M2 are 

congruent. Arc EIEz is 114", and therefore arc MIMz is also 114". Hence 
the period of Mercury is 

365 

days = 88.1 days 3600 360" + 114" 

87 







TRIGONOMETRY 

In space-related science, trigonometry has many applications ranging from 
solutions of right triangles to problems of a complex analytical nature. 
Seventeen problems from diversified areas are presented in this chapter. 

Problems requiring basically the solution of right triangles involve finding 
lengths of parallels of latitude, angles between satellites, altitudes, climb 
rates, climb angles, and the tracking of model rockets. A series of naviga- 
tion problems deals with both oblique and right triangles. 

The power output of a solar cell is investigated in terms of the angle of 
the incident sunlight. The law of sines and the law of cosines are used in 
several problems concerning radar acquisition of satellites. 

PROBLEMS 

1. The weight of an astronaut on the Moon is one-sixth his weight on 
Earth. This fact has a marked effect on such simple acts as walking, 
running, jumping, and the like. To study these effects and to train astro- 
nauts for working under lunar gravity conditions, scientists at NASA 
Langley Research Center have designed an inclined plane apparatus to 
simulate reduced gravity. 
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The apparatus consists of an inclined plane and a sling that holds the astro- 
naut in a position perpendicular to the inclined plane. The sling is at- 
tached to one end of a long cable which runs parallel to the inclined plane. 
The other end of the cable is attached to a trolley that runs along a track 
high overhead. This device allows the astronaut to move freely in a plane 
perpendicular to the inclined plane. 

a. Let W be the weight of the astronaut and 0 the angle between 'the in- 
clined plane and the ground. Make a vector diagram to show the tension 
in the cable and the force exerted by the inclined plane against the feet of 
the astronaut. 

Solution. The weight of the astronaut is resolved into two components, 
one parallel to the inclined plane, the other perpendicular to it. These 
components are W sin 6 and W cos 6, respectively. To be in equilibrium, 
the component W sin 6 must be balanced by the tension in the cable, and the 
component W cos 6 must be balanced by the force exerted by the inclined 
plane. 

W COS 8 

b. From the point of view of the astronaut in the sling, the inclined plane 
is the ground and his weight, that is, the downward force against the in- 
clined plane, is W cos 8 .  What is the value of 6 required to simulate lunar 
gravity -- .. is in &G 

Solution. To simulate lunar gravity we must have W cos 0 = W / 6 .  Thus 
cos 6 = 1/6 = 0.1667, and 6 = 80'24' to the nearest minute. The tension in 
the cable is W sin 80'24' = 0.986 W. 

2. A radar station tracking an aircraft indicates the elevation angle to be 
20" and the slant range to be 40 miles. Determine the altitude and hori- 
zontal range of the aircraft. 
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Solution. 

The altitude is 
BC = (40 mi) (sin 20°) 

= 13.7 mi 
and the horizontal range is 

AC = (4Omi)(cos 20°) 

= 37.6 mi. 

3. In 1 minute, an airplane cIimbing at a constant angle of 12" has flown 
a distance of 1.0 mile measured along its line of flight. Find the rate of 
climb of the airplane in miles per minute. 

Solution. 
1.0 milmin VR 

Computing the rate of climb R using the sine function yields 
R 

1.0 mi/min sin 12O = 

R = 0.2079 = 2.1 mi/min. 

4. Show that the length of any parallel of latitude around Earth is equal 
to the equatorial distance aroundEarth times the cosine of the latitude 
angle. 

Solution. 

By the definition of the cosine function, cos B = r / R  or r = R cos 8. The 
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length of th;! parallel of latitude is C,. 
ference of Earth, then 

c, = 2a.r 

If C, denotes the average circum- 

= 2 % ~  COS e 
= c. COS e. 

5. Find the length of the 30" parallel, north or south latitude. 
6.283 and R = 3,960 miles. 

Use 2rr = 

Solution. Applying the formula for the length of a parallel of latitude 
derived in problem 4 gives 

C, = (24,900 mi) (cos 30') 

= (24,900 mi)(0.866) 

= 21,560 or 21,600 mi. 

6. Determine the length of the Arctic Circle (66O33' N). 

Solution. Using the formula from problem 4, the length is 
C, = (24,900 mi) (cos 66'33') 

= (24,900 mi) (0.39795) 

= 9,910mi. 

7. How far is it "around the world" along the parallel of 80" N latitude? 

Solution. Using the result of problem 4, the distance is 
C, = (24,900 mi) (cos 80') 

= (24,900 mi) (0.17365) 

= 4,320 mi. 

8. A sweeping light beam is used with a light-source detector to determine 
the height of clouds directly above the detector, as in the following diagram. 

Clouds 

L d - 4  
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With the axis of the detector vertical, the light beam is allowed to sweep 
from the horizontal (a = 0) to the vertical (a = goo). When the beam 
illuminates the base of the clouds directly above the detector, as in the 
figure, the angle a is read, and with d known, the height h can be computed. 

a. Express h in terms of an appropriate trigonometric function of a and d. 

Solution. Applying the definition of the tangent function gives 

h = d(tan a). 

b. If the light source is 1,000 feet from the detector and the angle is 4 5 O ,  
compute the height of the cloud. 

Solution. Using the equation from part a gives 

h = (1,OOO ft)(tan 45O) 

= 1,Ooo ft. 

e. If the height of the cloud is 2,050 feet and the distance d is 1,000 feet, 
compute the angle a. 

Solution. Using the same equation, we find 

2,050 f t  = (1,OOO f t )  (tan a) 
2.050 = tan a 

a = 6 4 O .  

d. Find the angle a when clouds are 1,000 feet high and the light source is 
located 100 feet from the detector. 

Solution. Applying the same equation again gives 

1,OOO f t  = (100 f t )  (tan a) 

1 0 - t a n a  

a = 84.29' or about 84". 

9. The light source in problem 8 must be reasonably close to the detector 
so that the illumination of the cloud above the detector is sufficiently strong 
io be detected. At many C.S. Nztional Teather Service sbtions ttva h a m  
sources are used, one 800 feet and the other 1,600 feet from the detector. 
To have reliable readings, a may not exceed 85". 

a. If a = 85" and d = 1,600 feet, compute the height of the cloud. 

Solution. Using the equation from problem 8a, the height is 

h = (1,600 ft)(tan 85") 

= 18,288 or 18,300 ft. 
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b. If a = 85b for the light source at 800 feet, find a for the light source at 
1,600 feet (assuming the same cloud height). 

Solution. Working with the closer light source, the cloud height is found 
to be 9,144 feet. Thus the angle for the other light source is 

9,144 ft = (1,600 f t )  (tan a) 

5.715 = tan a 

a = 80.07O or 80". 

10. In problem 8, notice that as the beam rotates from a = 0" to a = 90" at 
a constant angular rate, the point of intersection of the beam with the axis 
accelerates upward. 

a. Complete the sentence "The smaller the angle the - the speed of the 
point of intersection." 

Solution. Because the point of intersection of the beam accelerates upward 
as Q goes from 0" to go", "the smaller a, the slower the speed of the point of 
intersection." 

b. If d = 1,000 feet, compute the difference of the height of intersection of 
beam and axis for a = 20" and a = 25". 

Solution. The heights when a is 20" and 25" are, respectively 
h = (1,OOO ft)(tan 20") 

= 364 f t  
and 

h = (1,OOO ft)(tan 25") 

= 466 ft. 

Thus the difference in height is 466 - 364 feet or 102 feet. 

11. A spacecraft designed to soft land on the Moon has three feet that form 
an equilateral triangle on level ground and each of the three legs makes an 
angle of 37" with the vertical. If the impact force of 1,500 pounds is evenly 
distributed, find the force in each leg. 
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Solution. Consider one leg. Five hundred pounds is the vertical com- 
ponent of force R acting at 37" from the vertical. Thus 

500 Ib cos 37" = - R 
500 Ib 
cos 37" 

Rx- 

= 626 Ib. 

12. Consider a flight from Chicago to Boston to be along a west-to-east 
direction, with an airline distance of 870 statute miles. A light plane hav- 
ing an airspeed of 180 miles per hour makes the round trip. 

a. How many flying hours does it take for the round trip with a constant 
southerly wind of 23 miles per hour? What are the headings for the two 
parts of the round trip? Disregard magnetic variation. 

Solution. Let 8 be the angle necessaT to compensate for the wind. 

Ground speed 

23 

Then 
23 sin 13 = - = 0.128 180 

and 
9 = 721'. 

Hence the ground speed of the plane is 

(cos 7'21') (180 mi/hr) = 179 mi/hr. 

The round trip will take 

1'740 mi = 9.72 hr or about 9 hr 43 min. 179 mi/hr 

The heading for the trip from west to east is 90" + 7"21', or 97"21', and 
the heading for the trip from east to west is 270" - 7"21', or 262"39'. 

b. How many flying hours will it take for the round trip with a constant 
southwest wind of 23 miles Fer hour? What headings will the pilot use 
for the two parts of the trip? Disregard magnetic variation. 

Solution. For the eastbound trip the law of sines is applied to determine 8. 

Ground meed 
A 3 

C 
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. 23 
180 sin e = - sin 45' = 0.090 

e = 5*io'. 

Applying the law of sines again, the ground speed represented by AB is 
determined as follows : 

-=- sin 129'50' 180 mi/hr AB 180 
sin C sin B sin 45' or A B =  

= 197mifir. 

Thus the time required for the eastbound trip is 

870 mi = 4.42 hr. 197 mifir 

For the westbound trip, 6 is again 5'10' and the ground speed is found by 
use of the law of sines. . 

A 

C 

sin 39050' X 180 mi/hr = 163 mi/hr, AB = sin 135' 

and the time required is 
870 mi = 5.34 hr. 163 mi/hr 

Thus the total time for the round trip is 9.76 hours, or 9 hours 46 minutes. 
The heading for the eastbound trip is 90' + 5'10' or 95'10' and the heading 
for the westbound trip is 270' - 5"10', or 264'50'. 

13. Magnetic variation is a correction or adjustment that has to be con- 
sidered after you have computed the heading for an aircraft flight. Be- 
cause of the fact that the magnetic north pole is not located at the geo- 
graphic north pole (it is actually in northern Canada), the north-seeking 
compass will point west of north in the eastern part of the United States, 
and east of north in the western part. These are called west and east 
(magnetic) variation, respectively, and are indicated on some maps by lines 
called isogonic lines (lines of indicated value of magnetic declination) show- 
ing values of the magnetic variation for any point. If you flew on a mag- 
netic course of 0" (north) from Boston, you would be flying about 15"30' 
west of north. If you really want to fly north, your compass would read 
15"30'. Thus you must add 15'30' to your computed heading to allow for 
the magnetic variation, on any heading. Conversely, if you were flying in 
the vicinity of Seattle, you would have to subtract 22" from any computed 

97 



CHAPTER 8 TRIGONOMETRY 

headinibecause the magnetic deviation there is 22' E. (For example, if 
you want a heading of due east (90') from Seattle, your compass would 
read 6 8 O . )  

. 

For the trip and conditions of problem 12a, adjust the computed headings 
to take into account magnetic variation. Consider variation at Chicago to 
be 2" E and at Boston 15p30' W. 

a. Find initial and final headings for the eastbound trip. 

Solution. Making the proper adjustments gives 
Initial heading (at Chicago) = 97'21' - 2' = 95"21', 

Final heading (at Boston) = 97'21' + 15'30' = 112'51'. 

b. Find the initial and final headings for the westbound trip. 

Solution. The desired headings are 
Initial heading (at Boston) = 262'39' + 15'30' = 278"9', 

Einal heading (at Chicago) = 262'39' - 2' = 260'39'. 

14. Two tracking stations s miles apart measure the elevation angle of a 
weather balloon to be a and p, respectively. Derive a formula for the alti- 
tude kL of the balloon in terms of the angles u and p. Ignore the Earth's 
curvature. 

Solution. Writing an equation for the cotangent of each angle and solving 
for x gives 

s + x  cot a = - h 

and 
x = h cot a - s 

X x cot p = 

x = h cot j3. 

Now the two expressions for x are equated : 
h cot a - s = h cot j3. 
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Thus 

or 
h(c0t a - cot 8) = s 

8 

cot a - cot B '  h =  

15. A typical setup for tracking model rockets is shown in the following 
sketch. 

R 

Theodolites, which are instruments used for measuring horizontal and verti- 
cal angles, are set up and leveled so that their azimuth dials are horizontal. 
They are zeroed in by sighting at each other along the baseline. While 
zeroed in, their azimuth and elevation dials are set at zero. 

When a model rocket is launched, both station operators track the rocket 
until it reaches maximum altitude. Tracking then ceases and the scopes 
are locked in final position. Azimuth and elevation angles on each theo- 
dolite area are read. On some ranges, these data are communicated to the 
launch area by means of a telephone system. On other ranges, data are 
recorded at each tracking station and later taken to the launch area for 
final reduction. 

ii. Assume that you are given distence h and a z g k  c, pj  Q. and +. Derive 
an equation for RX, the altitude of the model rocket, in terms of the given 
data. 

Solution. Point X is directly beneath the model R, and the distance RX is 
the altitude of the model. We find an expression for the distance and solve 
the triangle R-X-West in the vertical plane to find RX. 

Using the law of sines in trigonometry gives 
a b C 

sins srny sin8 
-=-=- 
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or - 
b sin B 
sin y 

b sin /3 
sin Il80" - (a + a)] c = - =  

Because R is directly above X by definition] the angle R-X-West is a right 
angle. We can therefore compute the western triangle as follows: 

or RX = e tan e. RX tme=- e 

Substituting for cy we find 
b sin /3 tan 6 

sin [lSO" - (a + P ) ]  

In a similar manner the other right vertical triangle may be solved to give 
b sin a tan 4 

sin [BO" - (a + a)] Rx 

The two values of RX may be compared ; and if they differ by more than 
about 10 percent, an error is apparent. The 
average of the two values of RX gives a more accurate value of the altitude 
achieved by the model. 

Otherwise, the track is good. 

A general rule for accuracy in the tracking of model rockets is that the 
angles are rounded to the nearest degree and the altitude is rounded to the 
nearest 10 feet. If the digit to be rounded is a 5 and the preceding digit 
is an odd digit, then the 5 is dropped and the preceding digit is increased 
by 1. If the digit preceding the 5 is an even digit, the 5 is simply dropped. 
Accordingly, a correctly rounded altitude will always be an even number. 

b. Given a 1,000-foot baseline, tracking East azimuth p = 23", tracking 
East elevation 0 = 36", tracking West azimuth a = 45", and tracking West 
elevation 4 = 53", find RX and determine whether the track is good. 

Solution. Applying the derived equation gives 
b sin /3 tan 0 

Rx = sin [180" - (a + P ) ]  
1,OOO f t  (sin 23") (tan 53") = 

ZriD [180° - (4.5" + BO)]. 
1,OOO f t  (0.391) (1.327) 

sin 112" 

= (0.391) (1.327) (1,079 f t )  

= 560 ft. 

= 

. Similarly, solving the other triangle gives RX = 554 feet. 

The average altitude is 557 feet, but rounding makes it 560 feet. 
and 554 are within 10 percent of the average, so the track is good. 

Both 560 
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16. A satellite traveling in a circular orbit 1,000 miles above Earth is due 
to pass directly over a tracking station at noon. Assume that the satellite 
takes 2 hours to make an orbit and that the radius of Earth is 4,000 miles. 

a. If the tracking antenna is aimed 30" above the horizon, at what time will 
the satellite pass through the beam of the antenna? 

Solutim. From the law of sines, 
sin a sin 7 
4,00=5,ooo 

_. Hence 

and 
Ql = 43.9" 

B 180' - (120° + 43.9') = 16.1". 

Time between p =: 16.1" and p = 0.0" is 16.10 (120 min) = 5.4 min. Thus 

the satellite will pass through the beam of the antenna at 12:OO - 5.4 min- 
utes or 11 :54.6 a.m. 

360" 

b. Find the distance between the satellite and tracking station at 12 :03 p.m. 
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Solution. Computing angle /3 gives 

360" = 9". /$=- 3 min 
120 min 

By the law of cosines, 

2' (4,000)' + (5,000)2 - 2(4,000)(5,000) COS 9" 

= (16 + 25 - 39.51) X 10' 
= 1.49 X 10" 

x = 1.22 x 108 = 1,220. 

Thus the distance between the satellite and tracking station is 1,220 miles. 

e. At what angle above the horizon should the antenna be pointed so that 
its beam will intercept the satellite at 12:03 p.m. 1 

Solution. Again, applying the law of sines, 
sin 9" sin (7 + 90") -= 
1,220 5J000 

sin (7 4- 90") = 5,000 sin 9" = 0.641 1,220 
cos 7 = 0.641 

y = 50"8' or 50" 
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17. A satellite C in an equatorial orbit is being tracked by two stations A 
and B both located on the Equator. 

I 
/ 
I-  

/ 

Given re = 4,000 miles, Q = 30", p = 50", and y = 30", compute the height h 
of the satellite C above the Equator, by following these steps: 

a. Notice that triangle AOB is isosceles. Compute the length AB using 
the law of sines and the fact that 28 = 180" - (a + p )  = 100". 

b. Compute the length AC. The angle ABC at B is 90" - S + y = 70", and 
angle OAC is a right angle. 

c. Now use the Pythagorean theorem in triangle AGO to compute the 
length OC. 

d. Compute the altitude h. 

Solation. 

a. 
28 = 180" - (a + 8) = 180" - 80" = 100" 

8 = 50". 

From the given data it is known that angle AOB = Q + p = 80". _ _  - .-\ 

A 

B 

103 



CHAPTER 8 TRIGONOMETRY 

Now by the law of sines 
AB 4,000mi -- 

sin 80° - sin 50" 

(4,000 mi) (0.955) 
0.766 ~ 

AB = 

= 5,140 mi. 

b. We know that LBAC = 90" - L OAB, but LOAB = 8 = 50". Thus 
L BAC = 40" and L ACB = 180" - (70" + 40") = 70". 

A 

B 

We see that triangle ABC is isosceles, therefore AB = AC = 5,140 miles. 

c. By the Pythagorean theorem 
(OC)2 = (AO)2 + (AC)2 

= (4,000 mi)2 + (5,140 mi)2 

= 16,000,000 mi2 + 26,420,000 mi2 

=: 42,420,oOo m i 2  

OC = 6,513 mi. 

d. The height h of the satellite above the Equator is represented by CD, 
which is 

OC - OD = 6,513 mi - 4,000 mi 
= 2,513 mi. 

.. . 
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GEOMETRY AND TRIGONOMETRY 
RELATED TO THE SPHERE 

This chapter deals only with mathematics related to the sphere. Some 
problems involve spherical geometry, some use plane trigonometry to ana- 
lyze plane figures related to the sphere, and a few use spherical trigonometry 
to study figures on the surface of the sphere. 

A series of problems deals with the percent of the surface that is visible 
from a given altitude above a spherical body. Others are concerned with 
distances and angles of lines of sight involved in the tracking of satellites 
by tracking stations. One problem considers the rotation of the “line of 
apsides” of an orbit caused by the equatorial bulge, and gives the formula 
for the angle of inclination that yields zero rotation. Other problems are 
concerned with the launch azimuth needed to achieve a given angle of incli- 
nation and with the location of the highest and lowest latitudes of an orbit. 

PROBLEMS 

The following figure applies to problems 1 through 8. The radius of Earth 
AE is taken to be 3,960 miles. 
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. 
1. Derive a formula for finding what fraction of the surface of a sphere of 
radius T can be seen from an altitude h above the surface of the sphere. 

Solution. In the preceding drawing, we note that triangles ABC and ACD 
are similar. 

AB AC 
AC AD 
-= -  

rh 
t + h '  

P- 

Let A, be the area of the zone with altitude BE. Then 

Let A, be the area of Earth. Then 
A ,  a h* 

h 
= 2(7 + h)  

2. Gemini 10, with astronauts Collins and Young aboard, flew in an orbit 
with perigee of 100 miles and apogee of 168 miles. What percent of Earth's 
surface was visible from each of these two altitudes? Assume that Earth 
is a sphere with radius of 3,960 miles. 

Solution. Substituting h = 100 and T = 3,960 in the derived formula, 

50 - 0.012. A.  100 
A .  - 2(3,960 + 100) = 4,060 - 
-- 

Thus the astronauts were able to observe 1.2 percent of Earth's surface from 
the perigee altitude of 100 miles. The problem from the apogee is solved 
in a similar manner. In this case h = 168, and 

-0.02. A ,  168 
A.  - 2(3,960 + 168) I 4,128 - -- 

Therefore 2.0 percent of Earth's surface was visible from the apogee alti- 
tude of 168 miles. 

3. Gemini 11 achieved an orbit with an apogee of 853 miles, a new altitude 
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record-for manned flight at that time. What percent of Earth’s surface 
was visible to astronauts Conrad and Gordon aboard Gemini 11 from apogee 
altitude? 

Solution. Because h = 853, 

853 - 0.0886 = 0.089. A ,  853 
A ,  
- =  

2(3,960 + 853) = 9,626 - 
The astronauts were able to observe 8.9 percent of Earth’s surface from an 
altitude of 853 miles. 

4. Discuss the manner in which the fraction varies with the altitude h. 

A 
A, 

On the surface of Earth, the fraction is zero. 

Solution. Intuition suggests that as h increases, the value of 3 should 

vary from zero to 1/2. As h 
increases, so does the fraction, and yet it must always be less than y~ ; Le., 
one cannot hope to view more than a hemisphere at any one time. A little 
algebra bears this out. 

A, h 
A, = 2(7 + h)  

is certainly zero when h = 0. Observe that 

A.  1 -= 
A* 2(f+1)’ 

As h increases, the denominator of the right-hand side decreases, which 

forces the entire fraction 2 to increase. Furthermore, as h + 00, -+ 0, 

= %. As 1 
2(1+ 0) 

and consequently - approaches A, , 

A r 
A, h 

5. Find what altitude from Earth the astronaut must be to see one-quarter 
of Earth’s surface a t  one time. 

Solution. Substituting in the equation, 

1 h 
4 = 2(3,960 + h)  
- 

4h = 2(3,960 + h)  

2h = 7,920 

h = 3,960. 

Therefore the astronaut would have to be 3,960 miles above Earth. The 
Erst astronauts to travel that far from Earth were the three American 
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astronauts, Abders, Bonnan, and Lovell, on board Apollo 8, which orbited 
the Moon on Christmas Day, 1968. 

6. What percent of Earth’s surface were the Apollo 8 astronauts able to 
see as they passed the Moon, a distance of about 235,000 miles from Earth? 

Solution. Because h = 235,000 miles, 
Aa 235,000 117,500 
A, * 2(3,960 + 235,000) 

= 0.4917 or 49.2 percent. 

7. The lunar altitude of the Command Module on several Apollo flights has 
been 69 miles. What fraction of the surface of the Moon can be seen from 
this altitude? 

Solution. The formula previously derived applies as well to the Moon as to 
Earth. EvidentIy h = 69 and r = 1,080. 

69 = - = 0.030 = 3.0 percent. Aa 69 - =  
A ,  2(1,080 -k 69) 2,298 

8. What percent of Earth’s surface can be “seen” from a synchronous 
satellite, whose altitude is 22,300 miles above Earth? 

Solution. Because h = 22,300 miles, 

= 0.425 = 42.5 percent. Aa 22,300 
A, 2(3,960 -k 22,300) 
-3 

A synchronous satellite can relay messages to about 42.5 percent of Earth’s 
surface. Thus three such satellites \evenly spaced around the Earth over 
the Equator could form the basis of a communications network covering 
the entire Earth. 

9. NASA tracking stations are located near the Equator; one in Ethiopia 
at 40° E longitude, the other near Quito, Ecuador, at 78” W longitude. As- 
sume both stations, represented by E and Q in the figure, are on the Equator 
and that the radius of Earth is 3,960 miles. 

0’ 
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a. Fin'd the distance between the two stations on a straight line through 
the Earth. The angular distance between the two meridians of longitude is 
78" + 40" = 118". 

Solution. 
0 

"#a' 

c 31' 31 

To find the distance, it suffices to consider right triangle OCE, for 2CE = 
QE. Hence 

~ 

QE = 2CE = 2 (3,960 mi) (sin 59") 

= (7,920) (0.85717) 
= 6,790mi. 

b. Given that the circumference of Earth is 24,900 miles, find the distance 
along the surface of Earth between the two tracking stations. 

Solution. To find the circumference, 360" or the whole circle was consid- 
ered. In this case, however, only 118" are to be considered. Thus the dis- 
tance is 

- '18" (24,900 mi) = 8,160 mi. 360" 

10. A satellite in equatorial orbit is observed at the same instant from the 
tracking stations in Quito and Ethiopia. The angle of elevation from Quito, 
above horizontal, is 5" and from Ethiopia, 10". 

0 

Find the distance of the satellite from Earth a t  the instant of observation. 
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slution. From the preceding problem, QE = 6,790 miles. Angles OQE 
and OEQ each measure 31". Therefore we know that the angles between 
QE and the local horizontals at Q and E each equal 59". Because the angle 
of elevation at Q is 5", angle EQS = 64". Similarly, angle QES = 69". 
We apply the law of sines to triangle QSE. (Note that angle OES contains 
looo.) 

SE 6,790mi 
sin 64' sin47" 
-= 

SE = 8,340mi. 

Applying the law of cosines in triangle OSE gives 

OS = d(3,960 mi)' + (8,340 mi)' - 2(3,960 mi) (8,340 mi) (cos 100") 

= 9,834 mi. 

Thus #e distance from Earth PS = 9,834 mi - 3,960 mi = 5,874 miles, or 
about 5,870 miles. 

11. Two NASA tracking stations are located near the 34.5" parallel of south 
latitude, one near Santiago, Chile, at 71" W longitude ; the other near Can- 
berra, Australia, at 149" E longitude. Assume that both stations, repre- 
sented by C and S in the figure, are at 34.5" S latitude and that the radius 
of Earth is 3,960 miles. 

0. 

a. What is the distance between the two stations in a straight line through 
Earth 1 

Sslutisn. 
Center of Earth 

0 

S C 
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. 
In the first drawing, angle SOC is 360" - (71" + 149") = 140". It is nec- 
essary to use the right triangle SOE in the second drawing to find OS. We 
note that angle ESO contains 34.5". 

Now 
OS = (COS 34.5') (3,960 mi) 

= (0.82413) (3,960 mi) 

= 3,264mi. 

The requ,=ed distance is SC in the first drawing, but SC = 2SP. Hence 

SC = 28P = 2 (3,264 mi) (sin 70') 

= (6,528 mi) (0.93969) 

= 6,134 or 6,130 mi. 

b. Given that the circumference of Earth at the Equator is 24,900 miles, 
find the distance between the two stations along the surface of Earth on 
the 34.5" S parallel. 

Solution. We use the formula derived in Chapter 8, problem 4, Cp = C, cos 
8, where C9 and C, are the lengths of the parallel of latitude and of the Equa- 
tor, respectively. 

Then 

.. 

*. 
cp = (24,900 mi) (cos 34.5") 

= (24,900 mi) (0.82413) = 20,520 mi. 

Because only 140" of the total 360" are to be considered, the required dis- 
tance is 

140' -20,520mi = 7,980mi. 360' 

c. Find the distance between the two stations along the surface of the 
Earth on the great circle passing through the two stations. Note that arcs 
CP and SP each contain 90" - 34.5" = 55.5". 

c s 

P (South Pole) 
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Solution. Using the law of cosines from spherical trigonometry gives 
c o s p  = c o s c c o s s + s i n c s i n s c o s P  

=i (cos 55.5")% + (sin 55.5O)*(cos 140O) 

= 0.32082 - 0.52029 

= -0.19947 

p = 101O30' = 6,090' 

Converting p to nautical and statute miles, we have 
p = 6,090nmi = 7,004smi = 7,OOOmi. 

12. A satellite passes directly over Santiago, Chile (34'18' S, 71'0' W), at 
a 150-mile altitude on a circular orbit heading due east at 17,350 miles per 
hour. How long after passing over Santiago and at what longitude will it 
next cross Earth's Equator? 

Solution. Because the satellite is observed heading due east, it is known 
to be at its apex, or point of greatest latitude (in this case south latitude). 
Halfway around its orbit it will be at greatest north latitude. Midway 
between these apexes it crosses the Equator. Thus the satellite will cross 
the Equator after an angular distance of go', or one-quarter of a sidereal 
period later. Because an angular distance of 90" at the satellite's altitude , 

27r(3'960 4- 150) = 6,456 statute miles, the time to travel this 4 is equal to 

(60 minutes per hour) = 22.33 minutes. diskme is 17,350 miles per hour 
In 22.33 minutes the Earth rotates through 5.57". Therefore the satellite 
crosses Earth's Equator 90' east of Santiago minus 5.57" for Earth's rota- 
tion, or 84.43" east of Santiago at 13.43' = 13'26' E longitude. 

6,456 miles 

13. If Earth were a perfect sphere, a satellite in orbit about Earth would 
travel in a perfect ellipse with the center of Earth at one focus. Actu- 
ally, there are deviations in Earth satellite orbits because of the equatorial 
bulge. The bulge causes a rotation in the orbital plane of the major 
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axis (often called "line of apsides") of the orbit. (More information on 
orbits and the technical language used will be found in the next chapter.) 
If 8 denotes the angle of inclination (angle between Earth's equatorial plane 
and the orbital plane of the satellite), then the approximate rate of rotation, 
in degrees per day, of the major axis is given by 

w = 4(5 cost.8 - 1). 

'Equatorial 

plane 

a. Show that there is no rotation effect (O = 0) if 6 is roughly 63". For 
this reason the early Soviet satellites were launched in such a way that 
their angles of inclination were about 63". The result was that the perigee 
point of such an orbit remained over the U.S.S.R., making data transmission 
optimal. 

Solution. Solving the equation 4(5 cos2 8 - 1) .=Q gives cos 8 = fi/5 = 
0.4472 or 8 = 63O26'. 

b. At what azimuth angle should a satellite at Kennedy Space Center (lati- 
tude 28.6" N) be launched so that its angle of inclination is about 63"? 
(The orbital plane intersects the surface of Earth in a great circle. By the 
azimuth angle we mean the angle between orbital plane and the plane of 
the great circle determined by Kennedy Space Center, the-North Pole, and 
the center of Earth.) 

Kennedy 
SPKCts  
Center 
28.6' N' 

'Equator 

S 
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~ 

Solution. Consider the right spherical triangle ABC shown in the figure. 
By Napier's rules for a right spherical triangle 

cos 63" = c& 28.6" sin B. 

Now log sin B = log cos 63" - log cos 28.6" = 9.71356 - 10, and B = 31" to 
the nearest degree. Hence the azimuth angle is 31". 

14. On July 16, 1969, Apollo 11, the first flight for a lunar landing, was 
launched from Kennedy Space Center into a temporary parking orbit, prior 
to translunar injection. The launch was at an azimuth of 72". The Ken- 
nedy Space Center is located at 28.6" N latitude and e80.6" W longitude. 

a. Compute the inclination of the orbital plane to Earth's equatorial plane. 

28.6' N 28.6' N 

. Solution. To find the angle of inclination to the orbital plane, apply Na- 
pier's rules for a right spherical triangle to triangle ABC in the drawing. 

COS A = sin 72' COS 28.6" 

fog cos A = iog sin 72" i- log coa 28.6" 

= 9.92170 - 10 
A = 33023' or 33". 

b. Compute the highest and lowest latitudes over which the orbit passed. 

,- 

Solution. This part can be solved by plane geometry. Because the orbital 
plane is inclined 33" to the plane of the Equator, it will intersect Earth's 
surface at 33" N latitude. Similarly, the low point of the orbit with refer- 
ence to the plane of the Equator will occur at 33" S latitude. 
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CONIC SECTIONS 

The mathematics of orbits is one of the most rewarding areas that the 
teacher or student interested in space technology can study. The theory 
of orbits grows, of course, out of mathematical properties of the conic 
sections. The purely mathematical characteristics of the conics have long 
been of interest to mathematicians. But when one realizes that the conic 
sections describe the paths along which all bodies in the universe have 
moved since the beginning of time, these “celestial highways” take on added 
interest. 

This chapter is organized somewhat differently from the others in the book. 
Instead of listing individual problems with only occasionally a sequential 
development of a topic, this chapter attempts to build a logical basis for 
understanding orbits. Therefore the textual material is longer and the 
number of individual problems somewhat smaller than in other chapters. 
In some cases, the text develops a concept and then presents as a problem 
a similar development or proof that the reader should be able to do. The 
material is far from complete, and the interested reader may wish to study 
further the laws of Newton and Kepler and the additional light they throw 
upon orbit theory. The chapter also deals only with the mathematics of 
ideal or simple situations, and does not consider the interaction of three or 
more bodies, nor the effect of perturbing forces. Some individual problems 
on perturbing forces are found in other chapters. 

In contrast to the other chapters, however, this one is open ended. After 
the basic formulas of orbital mechanics are understood, the teacher or stu- 
dent can find an unlimited number of numerical examples to which these 
formulas are applicable. News stories of launches of satellites usually give 
the orbital, parameters. It is interesting to check the report mathemati- 
cally to see whether our mathematical prediction of the behavior of the 
satellite agrees with that given in the news report. One can investigate 
many kinds of orbital situations involving not only spacecraft but the celes- 
tial bodies in the universe. In fact, the study of the information in this 
chapter may give msny resdzrs their Erst rrsl glimpse cf why bodies 
throughout the universe move as they do. 

PROBLEMS 

An understanding of the conic sections is of vital importance to any indi- 
vidual who wishes to understand the basic facts of orbital mechanics. Every 
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gravitational orbit of a satellite, planet, comet, meteor, star, galaxy, or  
other celestial body is a conic section, with the center of mass of the pri- 
mary body located at one focus of the conic. Because the simplest non- 
trivial conic section is the circle, we shall begin with a consideration of 
circular orbits. Most of us understand from experience Newton’s first law 
of motion, which states that an object in motion continues in a straight line 
unless it is acted upon by some force. If we wish to make an object move 
in a circular path rather than in a straight line, we must give it a constant 
push toward the center. Thus a central, or centripetal, force is required. 
For example, when we tie a string to an object and whirl it in a circle, the 
pull of the string is the force which keeps the object in the circular path. 

mu2 , where m is the If we represent the centripetal force by F1, then PI = - r 
mass of the object, v is its speed or velocity, and r is the radius of the circle. 

When a spacecraft is moving in a circular orbit about any primary body, 
the force toward the center is supplied by the force of gravity F2. Accord- 

ing to Newton’s law of universal gravitation, F2 = - GMm In this equa- r2 ’ 
tion, G is the constant of universal gravitation, assumed to be constant for 
all bodies in the universe ; M and m are the masses of any two bodies ; and T 
is the distance between their centers of gravity. The physical situation, if 
these two forces are equal, is represented in the 2ollowing drawing. 

The arrow toward the center represents the force of gravity, the dashed 
arrow represents the speed, or tangential velocity, of the spacecraft, and 
the curved arrow indicates the circular path. (In rigorous use, velocity is 
8 vector quantity, because it has beth magait?rde and direction; whereas 
speed, having magnitude only, is a scalar quantity. The two terms are 
often used interchangeably in space literature, and there will be no need for 
us to differentiate between them here.) Thus the force of gravity holds 
the body in the circular orbit. 

mu2 GMm If we set F1 =E;, we obtain - - - - 
T2 r Solving for v gives us 
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This simple equation enables us to find circular orbital velocities about any 
primary body, if M is the mass of the body and T is the radius of the orbit 
measured from the center of mass of the body. Because the value of GM 
is constant for any primary body, it is convenient to substitute its numerical 
value rather than to compute the value of the product for each individual 
problem. If the primary body is Earth, then GM = 1.24 x loia cubic miles 
per hour per hour. Thus for bodies in circular orbits around Earth, 

where, of course, the distance T is expressed in miles. (Note that the value 
GM = 9.56 x lo* cubic miles per second per second was used in Chapter 2.) 

1. Most manned spacecraft in Earth orbit have been placed at altitudes of 
about 100 miles or more because atmospheric drag at altitudes below 100 
miles causes a rather rapid deterioration of the orbit. Find the velocity 
needed for a body to stay in Earth orbit at an altitude of 100 miles. 

Solution. Using the given equation, 

= 10'- = 10' X 17.464 
= 17,mmi/hr. 

2. The formula for circular orbital velocity is perfectly general and can be 
applied to orbits about any primary body. G is a universal constant. .We 
need only to change the value of M when we are concerned with another pri- 
mary of different mass. 

a. The mass of the Moon is approximately 0.012 times the mass M of Earth. 
Write a formula for finding circular orbital velocities about the Moon. 

Solution. Multiplying the numerator in the previous equation by 0.012, - 

b. During the Apollo flights the parking orbit for the Command Module 
about the Moon has an altitude of 69 statute miles. The radius of the Moon 
is about 1,080 miles. Find the velocity in this orbit. 
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i= 1 O s f i  = 3,600 mi/hr. 

3. A synchronous Earth satellite is one which is placed in a west-to-east 
orbit over the Equator at such an altitude that its period of revolution about 
Earth is 24 hours, the time for one rotation of Earth on its axis. Thus the 
orbital motion of the satellite is synchronized with Earth's rotation, and the 
satellite appears from Earth to remain stationary over a point on Earth's 
surface below. Such communication satellites as Syncom, Early Bird, Intel- 
sat, and ATS are in synchronous orbits. Find, the altitude for a synchro- 
nous Earth satellite. 

Solution. The velocity can be found from the equation for circular orbital 
velocity. It can also be found by dividing the distance around the orbit by 

the time required ; that is, v = - ',rr Because the two velocities are equal, - t '  

It is apparent that t = 24 hours. Substituting the other values yields 

3 p z x F m z  = M,d' 
4 X 3.145 

= lo4=* = 26,260 mi. 

r =  

Altitude = 26,260 - 3,960 = 22,300mi. 

2 X 3.14 X 26,260 = 6,870 m;-i.r. 
24 t i =  L 

TO understand orbits, we must know something of the nature and properties 
of the conic sections. They get their name, of course, from the fact that 
they may be formed by cutting or sectioning a complete right circular cone 
(of two nappes) with a plane. Any plane perpendicular to the axis of the 
cone cuts a section that is a circle. Incline the plane a bit, and the section 
formed is an ellipse. Tilt the plane still more until it is parallel to a ruling 
of the cone and the section is a parabola. Let the plane cut both nappes, 
and the section is a hyperbola, a curve with two branches. It is apparent 
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- 
that closed orbits are circles or ellipses. Open or escape orbits are parabolas 
or hyperbolas. 

Another way of classifying the conic sections is by means of their eccen- 
tricity. If we represent the eccentricity by e, then a conic section is 

A circle if e = 0, 
An ellipse if 0 < e < 1, 
A parabola if e = 1, 
A hyperbola if e > 1. 

In actual practice, orbits that are exactly circular or parabolic do not exist 
because the eecentricity is never exactly equal to 0 or 1. 

We shall now derive a group of formulas that are needed in working with 
orbits. The reader should carefully study and frequently refer to the fol- 
lowing drawings. The formulas derived will be numbered for easy refer- 
ence in solving the problems that follow the discussion. 

The first drawing shows the ellipse as it is presented in the literature on 
analytical geometry. F1 and FZ are the two foci, a is the semimajor axis, 
b is the semiminor axis, c is the distance from a focus to the center, and the 
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C eccentricity: e =-. It is apparent that if c = 0, PI coincides with the cen- a 
ter, and e = 0. Thus a circle is an ellipse with eccentricity equal to zero. 
If we move the foci farther from the center, the ellipse becomes stretched 
out horizontally and narrower vertically, and the eccentricity increases. 

What such changes mean in an orbit can be explained with the second draw- 
ing and the two-body formula, or “vis-viva integral,” 

(Deriving this equation is beyond the scope of this book.) This drawing 
shows the primary body located at a focus, while T is the “radial” distance 
of the satellite S from the center of its primary. If T has the constant 
value a, the ellipse is a circle and the formula reduces to the familiar one 
for circular orbital velocity, 

v o  = e. 
The formula for the velocity of a satellite in a parabolic escape orbit cam be 
obtained as a limiting case of equation (1). The following illustration was 
obtained by drawing graphs of a conic, expressed in polar coordinates, T = 

1-ecos 0’ (In this case, the particular conic used was T = - e cos 8 .  

--- F. 
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'The directrix and the prime focus Fo are fixed. The values of e used are, 
from right to left (toward the directrix), 1/3, %, v!, and 1. For the three 
ellipses obtained, the empty foci are at F,, F2, and Fa, respectively. We 
note that as the eccentricity increases, the empty focus moves to the right, 
and the vertex moves toward the directrix. As we allow the eccentricity 
to approach unity, the semimajor axis tends to infinity. When the eccen- 
tricity is 1, the ellipse opens to a parabola, and the empty focus Fl is at 
infinity. Thus in the case of a parabolic escape orbit, 

Noting the similarity to equation (2) of the expression for minimum escape 
velocity, we write 

(3) 

Thus the minimum, or parabolic, escape velocity can be obtained readily by 
multiplying the circular orbital velocity at that radius by d2. If the 
velocity imparted to the satellite is greater than this, the satellite simply 
follows a hyperbolic path, and the eccentricity is greater than 1. 

Before we discuss elliptical orbits, it will be necessary for us to avoid am- 
biguity by clarifying our terminology and mathematical notation. Most 
of us know from our reading of space events that in NASA news reports 
the point in an orbit nearest the surface of Earth is called perigee, whereas 
the farthest point from the surface is called apogee. These points are in- 
dicated by C and D, respectively, in the second ellipse drawn on page 122. 
In common usage the word is used to refer to either the position of the 
point or the distance to the point. 

However, usage is not uniform and some references state that the dis- 
tances are measured, not from the surface, but from the center of Earth. 
In this book, we shall use distances measured from the center. The dis- 
tances from the center to perigee and apogee will be indicated by P and A, 
respectively. In most discussions, the context will make this clear. If in 
any situation confusion could result, then distances from the surface, if 
used, will be called perigee altitude or apogee altitude, whereas distances 
from the center will be called perigee radius or apogee radius. Incidentally, 
the mathematics is simpler when distances . -  - are measured from the center. 

4. Derive a formula for the eccentricity of an elliptical orbit in terms of 
A and P. 

Solution. The following relationships are apparent from the aforemen- 
tioned drawing, 

a = %(A + PI, 
c=;  U -  P = %{A + P) - P I: %(A - P), 
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. 
and 

This formula provides a quick and easy way of finding the eccentricity of an 
elliptical orbit. As a check, we note by inspection.that e = 0 when A = P, 
which is the condition for a circular orbit. 

Formulas for velocities at apogee and perigee can be obtained easily from 

equation (l), the two-body formula. Because e =- c = ea. But, as we a' 
note in the drawing on page 122, 

c 

A = e  + a = eu + u = a( l  + e). 

Rearranging this equation, 
1 l + e  
a A '  
-=- 

Obviously at apogee T = A. Let v, = the velocity at apogee. Substitut- 
ing in equation (1) , 

which simplifies to 

5. Derive a formula for 'UP, the velocity at perigee. 

Solution. Prcceeding as for the velocity at apogee, 

P = u -  c = u - ae = u(1- e) 
and 

1 - 1 - e  
a P '  --- 

Substituting in (1), 

VP = dGM($ - 9) 
which simplifies to 

vp = 4- 
These equations can be written in various other ways, because there are 
numerous possible ways of expressing relationships among e, c, a, A, and 
P. The particular form for the formulas reflects personal preference. 
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6. Show that the velocities at apogee and perigee are inversely proportional 
to the distances from the center. 

Solution. If we divide equation (5) by equation (6), we obtain 

Thus the velocity at perigee is inversely proportional to P, etc. That is, 
when the orbital distance from the center of the primary body is small, the 
velocity at that point is large ; and when the distance is large, the orbital 
velocity is small. This result agrees with Kepler's second law of planetary 
motion, which states that a planet moves about the Sun in such a way that 
the radius vector from Sun to planet sweeps out equal areas in equal times. 

7. Derive a formula for the period of an elliptical orbit, given that the 
period of an elliptical orbit with semimajor axis a is the same as that for a 
circle with radius T = a. 

Solution. Following the method used in problem 3, we express the velocity 
in terms of the distance around the orbit and the time p required to make 
one transit of the orbit, 

2m 

Also 

Then 

f J = - .  

v =  e. 

P = 2 i T p  GM'  

Because the period is the same when T = a, we may write 

p = 2 a - g .  

8. An Earth satellite is placed in an elliptical orbit with perigee altitude of 
100 miles and apogee altitude of 10,000 miles. Use 3,960 for the radius of 
Esrth. 
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a. It in jeetion is at perigee, what must be the in je t ion velocity ? 

Solution. We first find the eccentricity as follows: 

P = 3,960 + 100 = 4,060. 

A = 3,960 + 10,OOO = 13,960. 
By equation (41, 

13,960 - 4,060 - 9,900 o,55. --= 
13,960 + 4,060 18,020 e =  

By equation (6), 

y p =  (1.55) = lo3- = 10' X 21.749 

= 21,800 mi/hr. 

b. Find the speed at apogee. 

Solution. Using equation (51, 

= 1 0 8 f i  = lo8 X 6.32 = 6,32Omi/hr. 

c. Find the period in this orbit. 

Solution. Using equation (7), 

13,960 + 4,060 9,010 
2 a =  

and, 

= 6.283d59 X 10-' = 6.283 X 0.768 

= 4.825 = 4.83 hr. 

9. During the Apollo flights, the Apollo spacecraft and the third stage 
(STVB) of the Saturn V launch vehicle are placed in a parking orbit 117 
miies above EartR. Find the veiocity and period in this orbit. 

Solution. Because T = 3,960 + 117 = 4,077 miles, we find from equation 
(2) 9 

vc = ,/T = 103- = 17,400mib. 

From equation (7), 

= 6.2834- = 6.283 X 0.234 = 1.47 hr. P 1.24 x 10'2 
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10. During the flight of Apollo- 11, the SIVB stage was reignited and 
burned long enough to place the Apollo spacecraft on a trajectory to the 
Moon. At the end of the burn, the spacecraft had a velocity of about 
24,230 miIes per hour at an altitude of 209 miles. Was the Apollo space- 
craft given escape velocity ? 

Solution. Using equations (2) and (31, 

and 
V ,  = 6 X 17,250 = 1.414 X 17,250 = 24,390 mi/hr. 

Thus the velocity imparted was about 160 miles per hour less than escape 
velocity, thereby assuring a free return trajectory. That is, if the major 
propulsion systems failed, the spacecraft would be going slowly enough to be 
pulled around and oriented back toward Earth by lunar gravity, the atti- 
tude-control system being adequate to make needed course corrections. 

11. A spacecraft, as illustrated in the following drawing, is in a circular 
orbit 500 miles above Earth. It is desired to transfer the spacecraft to a 
lower circular orbit 100 miles above Earth. Compute the velocity changes 
needed at A and P to achieve this transfer. 

A 

Solution. We first find the eccentricity of the transfer orbit, which is, of 
course, an ellipse, with A = 4,460 miles and P ----4,060 miles. 

We then compare the velocities at A in the circular.orbit and the elliptical 
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orbit to flnd what change must be made. Using equations (2) and (5), 

and 
v,, = 4- = 16,700 mi/hr 

Therefore a propulsion engine on board the spacecraft must be fired long 
enough so that a retrothrust (opposite to the direction of motion) will slow 
down the spacecraft by 400 miles per hour. The spacecraft will then leave 
the 500-mile circular orbit and will follow the elliptical transfer orbit, re- 
maining in it indefinitely unless additional changes in velocity are made. 

When the spacecraft reaches the point P, however, we want it to move from 
the elliptical orbit into the 100-mile circular orbit. Therefore we must use 
equations (2) and (6) to investigate velocity changes at P. 

v6 = d T  = 17,50Omi/hr. 

up I '4- = 17,900 mi/hr. 4,060 

That is, a retrothrust must reduce velocity again, this time also by about 
400 mi/hr. 

This method of transferring a spacecraft from one orbit to another is known 
as a Hohmann transfer, named after Walter Hohmann, city engineer of 
Essen, Germany, who published the method in 1925. There are many 
paths that could be used to move the spacecraft from the 500-mile to the 
100-mile orbit. But the Nohmann-transfer ellipse, requiring only two 
short bums, is the most eeonomical, taking the minimum amount of energy. 
Therefore, this method is called a minimum-energy transfer. It has many 
applications. 

12. A satellite is placed into a synchronous orbit by a technique involving 
a Hohmann-transfer ellipse. We computed in problem 3 that the altitude 
of such a satellite is about 22,300 miles, and its orbital speed is about 6,870 
rniZe5 per hour. The idlowing drzwing. suggests the details. . , 

A 
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We shall assume that injection is at the perigee point, which we shall place 
100 miles above Earth. Then obviously P = 3,960 + 100 = 4,060, and A = 
3,960 -/- 22,300 = 26,260. We wish to find the velocity change needed at A. 

Solution. 

e =  

VP = d w  = lo3- = 23,000mi/hr. 

.Jp = loa* = 3,56Omi/hr. 

But the tangential velocity needed at point A is 6,870 miles per hour. 
Therefore the velocity of the satellite must be increased in the direction of 
Earth’s rotation by 6,870 - 3,560 = 3,310 miles per hour. This extra push 
or kick would be provided by the firing of a motor on board the satellite, and 
the thrust and firing time must be such as to give the desired increment in 
velocity. Such a motor to be fired at apogee is called an apogee motor, and 
the thrust it provides is called an apogee kick. 

The relative efficiency of using this method is easy to understand. The 
placing of a heavy final stage of the launch vehicle at the synchronous alti- 
tude and then having a burn to give the entire assembly circular orbital 
velocity would take much fuel. Instead we send up to the synchronous 
altitude only a relatively light satellite and a small apogee motor. The 
numerical values used in this problem are merely illustrative. If the per- 
igee-altitude is higher or lower than the one we have assumed, all of the 
other numbers are changed. 

One more maneuver is needed to make the satellite synchronous. It now 
has a period equal to the time of rotation of Earth. However, the satellite 
will appear to be stationary over a given point only if it is in equatorial 
orbit. Unless corrections were made during launch, the plane of the orbit 
will be inclined to the plane of the Equator. One method of solving this 
problem is to fire a motor at the precise instant when the satellite crosses 
the Equator, adjusting the burning time and direction of thrust so that the 
vector sum of the burn velocity and the orbital velocity make the angle of 
inclination equal to zero. . -  

13. The first step in lunar orbit injection in the Apollo 11 flight was to place 
the spacecraft in an elliptical orbit of 69 by 196 miles, the low point or 
perilune (corresponding to perigee for Earth) being on the back side of the 
Moon. 

a. Compute the veIocity needed at perilune to inject the Apollo spacecraft 
into this orbit. 
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Solution. Using the data developed for lunar orbits in problem 2, 

P = 1,080 + 69 = 1,149. 

A = 1,080 + 196 = 1,276. 

1,276 - 1,149 127 = 0.052. -- 
e a 1,276 + 1,149 - 2,425 

VV = 4- = l O 3 m  = 3,6Wmi/hr. 

b. Find the period in this orbit. 

Solution. Evidently a = 1/2 (1,276 f 1,149) = 1,212 and 

= 2.17 hr = 130 min. 

14. The Lunar Module descent orbit insertion during the Apollo 11 mission 
began with a Hohmann transfer. The Command and Lunar Modules were 
in a circular orbit 69 miles above the Moon. The Lunar Module was de- 
tached and its descent engine was fired to reduce veIocity so that it would 
enter a 69- by 9-mile lunar orbit. (The perilune altitude of 9 miles was 
usually given in news reports as 50,000 feet.) Find the reduction in veloc- 
ity needed to achieve this orbit. The Command Module remained in the 
69-miIe parking orbit. 

I 50.000 ft 

Landing 

Solution. In this @ase,-the change ta the eltliytical transfer orbit was made 
at apolune'(corresponding to apogee for Earth). 

A = 1,080 + 69 = 1,149. 

P = 1,080 + 9 = 1,089. 

1,149 - 1,089 =-- 60 - o,027. e = 1,149 + 1,089 2,238 
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We found in problem 2 that the circular velocity in the 69-mile orbit was 
3,600 miles per hour. Thus the reduction in velocity needed, achieved by a 
retroburn of the Lunar Module descent engine, was 50 miles per hour. At 
perilune altitude of 9 miles, several retroburns and attitude changes were 
made, both automatically and manually by the pilot, causing the spacecraft 
to descend to the surface. If for any reason the descent from the 9-mile 
(50,000-foot) perilune could not be made, the Lunar Module could have 
remained indefinitely in the elliptical transfer orbit until a rendezvous and 
docking with the Command Module could be made. Thus this maneuver, 
which seemed so tricky and dangerous as we watched before our television 
sets, was actually a routine Hohmann transfer. The tricky maneuver, re- 
quiring some manual control, came when the powered descent to the lunar 
surface was made from the 50,000-foot altitude. 

15. In Chapter 3, problem 8, we discussed some problems related to manned 
exploration of an asteroid. It has been suggested that if an asteroid were 
sufficiently small, a source of propulsion could be placed on it to move it into 
Earth orbit, where it might be used as an object of study or even as a space 
station. We assumed a spherical asteroid with a diameter of 14 miles. 
For convenience, we named it A-14. Compute circular and escape velocity 
at  the surface of A-14. Could an astronaut run fast enough on A-14 to 
put himself into a circular or escape orbit? 

Solution. We found in the previous asteroid problem that if M is the mass 
of Earth, the mass of A-14 is 3,314 X 10-l2 M .  Inserting this multiplier 
into equation (2), 

1.24 X 10I2 X 3,314 X lWl2 
7 98 = 

and 
v. = 4 X 24.2 = 1.414 X 24.2 = 34.2 mi/hr. 

A study of track and field records set on Earth will show that a world’s 
champion sprinter cannot run, even for a short distance, at the rate of 24.2 
miles per hour, the circular orbital speed at the surface of A-14. -Ne&n’s 
second law of motion, F = ma, indicates that a man cannot run faster on 
the Moon or on an asteroid than on Earth. The forward force F exerted 
by his muscles is the same, and his mass m is unchanged by the reduced 
gravity. Thus each forward push should give him the same acceleration 
as on Earth. Furthermore, his cumbersome spacesuit would interfere with 
motion. Thus an astronaut on A-14 could not by his own physical activity 
put himself into orbit. He would not need a tether to keep himself from 
ffoating away. For an investigation of other factors related to physical 
activity on A-14, see Chapter 3. 
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CHAPTER 10 CONIC SECTIONS 

16. We have noted that the velocity of a spacecraft in a circular orbit de- 
creases when its distance from the center of the primary body increases. 
Therefore i t  requires less kinetic energy to orbit a spacecraft at a higher 
altitude. The question is then often asked why spacecraft are not orbited 
at higher altitudes to conserve energy. Given that the gravitational p 

tential energy is?, show that the swing in kinetic energy is more 
than offset by the work required to give the satellite greater height. 

Solution. Let p and q be the radii of the orbits, where q > p. Then the 
change in potential energy is 

GMm GMm 
&?&=--- 

Q P' 

We have noted that the required velocity for a circular orbit of radius r is 
given by 

mvz M Because kinetic energy EX= - , we multiply the given equation b y 3  
to obtain 2 

mv' GMm E ~ P - S -  
2 2 .  

Then 

That is, 

Thus the change in potential energy is twice the change in kinetic energy ; 
and as a result, more energy is needed to launch at high altitudes than at 
lower altitudes. 
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